



# **TRAD's Activity related to GEANT4: Cryostat Study** P. Pourrouquet, C. Dossat, P. Garcia, A. Ait Ali Sahid, M. Vaille, N. Chatry (TRAD) M. Boutillier, F. Bezerra (CNES)



TRAD, Tests & Radiations



- CNES needs to perform proton irradiation tests at cryogenic temperature on space components:
  - Use of CNES's cryostat to reach 80K
- This may induce perturbations compared to a normal test
  - Parts of the cryostat could modify the proton beam (glass window)
  - Study of possible activation (may create safety and delay issues)







#### Feasibility study of cryogenic tests for high energy protons using a cryostat funded by CNES performed by TRAD

#### Need of a chain of tools:

- FASTRAD<sup>®</sup> for cryostat modeling,
- GEANT4 for dose and transmitted spectra calculation in different cryostat volumes including Devices Under Test (DUT) inside the cryostat,
- **FISPACT** for activation calculation,
- **RAYXPERT<sup>®</sup>** for radio protection calculation.

# Calculation validation by comparisons with measurement values







- Software presentation
- Cryostat model
- Dose estimation after irradiation
  - GEANT4 results
  - DUT level measurements
- Radioprotection calculation
  - Activation level determination
  - Dose rate calculation and radio protection conclusion

4

# Conclusion





# **Tool presentation**

#### FASTRAD

Commercial 3D CAD software dedicated to dose calculation (sector analysis and RMC) in space environment. It is developed and distributed by TRAD

GEANT4

#### • FISPACT:

'Multiphysics platform providing advanced simulation methods and employing complete nuclear data for both neutron and chargedparticle interactions.'

It is developed and maintained by the United Kingdom Atomic Energy Authority

#### • RAYXPERT:

Commercial 3D CAD software dedicated to dose rate calculation (FMC) in nuclear & medical environment. It is developed and distributed by TRAD









### **Cryostat model - FASTRAD**



![](_page_5_Picture_3.jpeg)

![](_page_6_Picture_0.jpeg)

# **GEANT4** Calculation

#### **Project modifications for post-processing**

- Dose calculation
  - Particle importance biasing: dose rate for an equivalent flux of 1 proton/cm<sup>2</sup>

#### Transmitted spectra in the activation areas:

- Different particle types:
  - Electrons,
  - Photons,
  - Protons,
  - Neutrons
- Energy group
  sampling
  corresponding
  to input needed for
  activation software

![](_page_6_Figure_12.jpeg)

Spectra at DUT level for 60 MeV protons

![](_page_6_Picture_14.jpeg)

![](_page_6_Picture_16.jpeg)

![](_page_7_Picture_0.jpeg)

#### First Phase: TID & TNID dosimeter calibration

- List of potential dosimeters
- Dosimeter irradiations without cryostat for different proton energies
- Study of the parameter drifts

Calibration curve for DOSELEC

• Creation of the calibration curves: deposited dose according to drift

![](_page_7_Figure_7.jpeg)

Calibration curve for TSD

 Selection of the most suitable dosimeter for TID & TNID considering these calibration curves:

- TID: DOSELEC (TRAD), P-Channel MOSFET
- TNID: TLP190B (Toshiba), GaAIAs Optocoupler & Photodiode

![](_page_7_Picture_13.jpeg)

![](_page_8_Picture_0.jpeg)

#### Measurements at DUT level using different dosimeters for 60 MeV protons

#### • TID: DOSELEC (TRAD), P-Channel MOSFET

|                        | Fluence (protons/cm <sup>2</sup> ) |       |       |       |       |         |       |  |  |
|------------------------|------------------------------------|-------|-------|-------|-------|---------|-------|--|--|
| Calculation / Measures | 1E+10                              | 3E+10 | 5E+10 | 7E+10 | 1E+11 | 1.5E+11 | 2E+11 |  |  |
| Difference (%)         | -15                                | -14   | -14   | -13   | -13   | -12     | -12   |  |  |

#### • TNID: TLP190B (Toshiba), GaAlAs Optocoupler & Photodiode

|                        | Fluence (protons/cm <sup>2</sup> ) |       |       |       |       |         |       |  |  |
|------------------------|------------------------------------|-------|-------|-------|-------|---------|-------|--|--|
| Calculation / Measures | 1E+10                              | 3E+10 | 5E+10 | 7E+10 | 1E+11 | 1.5E+11 | 2E+11 |  |  |
| Difference (%)         | -35                                | -17   | -14   | -11   | -5    | -4      | -3    |  |  |

#### Match between measurement and simulation => chain validated @ 60 MeV Possibility to use it at higher energies

![](_page_8_Picture_8.jpeg)

![](_page_8_Picture_10.jpeg)

![](_page_9_Picture_0.jpeg)

## Activation-FISPACT/Radioprotection-RAYXPERT

#### 60 & 185 MeV proton radiological inventory

- Activity for each isotope
- Input for radioprotection calculation

#### **Radioprotection calculation**

- Maximum H\*10 dose rates:
  - 4.1 µSv/h @ 10 cm from the cryostat
  - 69 µSv/h @ cryostat surface
  - => Controlled area

#### Safety measures:

- Proton beam room already a controlled area
- No need to implement additional safety plan

![](_page_9_Picture_13.jpeg)

![](_page_9_Picture_14.jpeg)

# Activation-FISPACT/Radioprotection-RAYXPERT

#### Decrease of H\*10 dose rates

#### **30 minutes after irradiation**

Tests & radiations

- at 10 cm from the cryostat: from 4.1 to 1 µSv/h
- at cryostat surface: from 69µSv/h to 18µSv/h

![](_page_10_Figure_5.jpeg)

Comparisons between calculation and measurements at 60 MeV:

#### Not possible to consider the same configuration

- Measurement: 20µSv/h for 2E+11 protons/cm<sup>2</sup>, 10 minutes after irradiation and behind a collimator
- Calculation: 46µSv/h for 1E+11 protons/cm<sup>2</sup> at the end of the irradiation at the glass window contact

#### H\*10 dose rate measurement and calculation give equivalent results

![](_page_10_Picture_11.jpeg)

![](_page_10_Picture_13.jpeg)

![](_page_10_Picture_14.jpeg)

![](_page_11_Picture_0.jpeg)

- A chain of software tools including GEANT4 has been used to assess the feasibility of a proton irradiation at very low temperatures using a cryostat
- Comparisons at room temperature for 60 MeV protons between
  - GEANT4 calculation results and irradiation measurements validating the simulation results
  - H\*10 dose rate measurement and calculation give equivalent results
- 185 MeV proton tests are possible without implementing additional safety measures and without delay due to cryostat activation

![](_page_11_Picture_7.jpeg)

![](_page_12_Picture_0.jpeg)

# Thank you for your attention

![](_page_12_Picture_2.jpeg)

![](_page_12_Picture_3.jpeg)

![](_page_12_Picture_4.jpeg)

![](_page_12_Picture_5.jpeg)