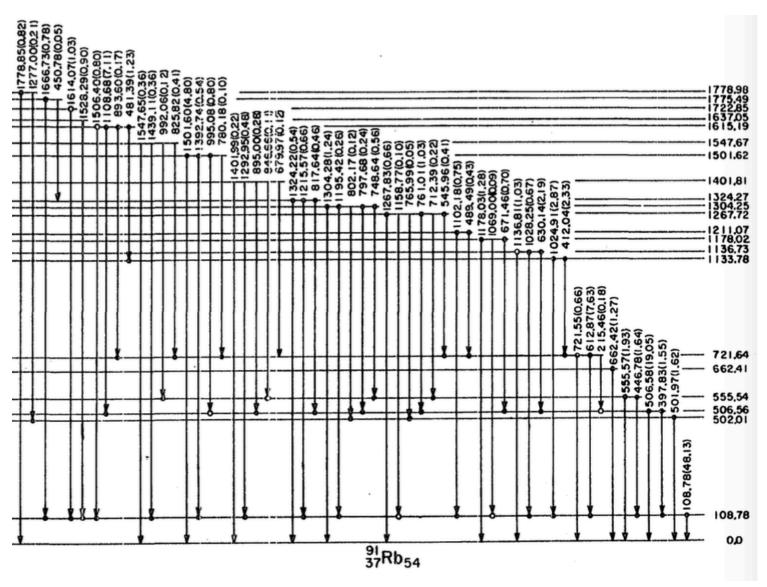
Updates on Hadronic Physics

Dennis Wright
Geant4 Space Users' Workshop
11 April 2017

Outline

- Since August 2015 (the last Space Users Workshop)
 - Ions, isomers, nuclides
 - Radioactive Decay
 - Nuclear de-excitation
 - High precision particle code
 - Cascade models
 - High energy models
- In progress
 - Neutrino scattering
 - Hadronic model parameter variations
- Coming attractions


Ions, Isomers and Nuclides (1)

- "Floating levels"
 - ~hundreds of nuclear levels are either known or expected to exist but do not have well-determined energies
 - decay chains are sometimes built on these levels with well measured transition energies
 - these levels previously represented by adding a very small energy (e.g. 0.000004 keV) to the expected level energy → Pa234[73.920004]
- Now implemented as distinct nuclides and propagated as such by Geant4
 - represented now as Pa234[73.92+X]
 - if more than one floating level per nucleus use Y, Z, W, ...

Ions, Isomers and Nuclides (2)

- Modifications of G4IonTable, G4PhotonEvaporation, G4RadioactiveDecay, etc. were required
- Three databases providing this information were rationalized
 Shared data now consistent
 - RadioactiveDecay5.1.1
 - PhotonEvaporation4.3.2
 - G4ENSDFSTATE2.1
- Working on easier access by compressing data sets or offering more data in fewer files
- Data exists for resolving some of the floating levels → less of a problem in future

Typical Nuclear Level Scheme

Radioactive Decay Improvements

- Improved energy conservation
 - down to ~ 30 eV for decays by electron capture and isomeric transition (< 1 eV for alpha, beta)
 - used Zoglauer approximate model of outer shell energies
 - could do better with more sophisticated atomic de-excitation model
- Switched from G4UAtomicDeexcitation to G4VAtomicDeexcitation (as in EM code)
 - more general
 - better treatment of fluorescence and Auger emission
 - de-excitation parameters now set by G4NuclearLevelData

Radioactive Decay and Photon Evaporation

- Correlated Gamma Emission
 - Now fully implemented
 - Previous photon evaporation code could emit multiple gammas during de-excitation, but they were isotropic and not correlated with each other
 - New code (Jason Detwiler) makes use of J^{π} data to calculate the Legendre polynomials corresponding to the multipolarity of the gamma transition
- This required still more additions to the photon evaporation database (thanks, Laurent!)
 - nuclear spin (J), parity (π), multi-polarity (E0, E1, M1, etc.)
 - PhotonEvaporation 4.3.2

But Still Some Problems

- Correlations have not yet been validated and several warnings appear
- Reproducibility
 - addition of gamma correlation to radioactive decay reintroduces irreproducibility
 - reproducibility recovered when correlations turned off
 - caching of successive nuclides in decay chain the likely suspect

- Radioactive decay code still does not take full advantage of multithreading
 - working on improved RDM database file access

Nuclear De-excitation

- Evaporation, Fermi Breakup and Photon Evaporation models all re-written to use common nuclear level data
- Customizable parameters for precompound and de-excitation models – set in physics list builder

- Improved treatment of Coulomb barrier led to some improvement in final state neutron and proton spectra at low energy (< 100 MeV)
- Increased use of C++11 features
- Changes resulted in some slow-down for calorimetry applications

ParticleHP

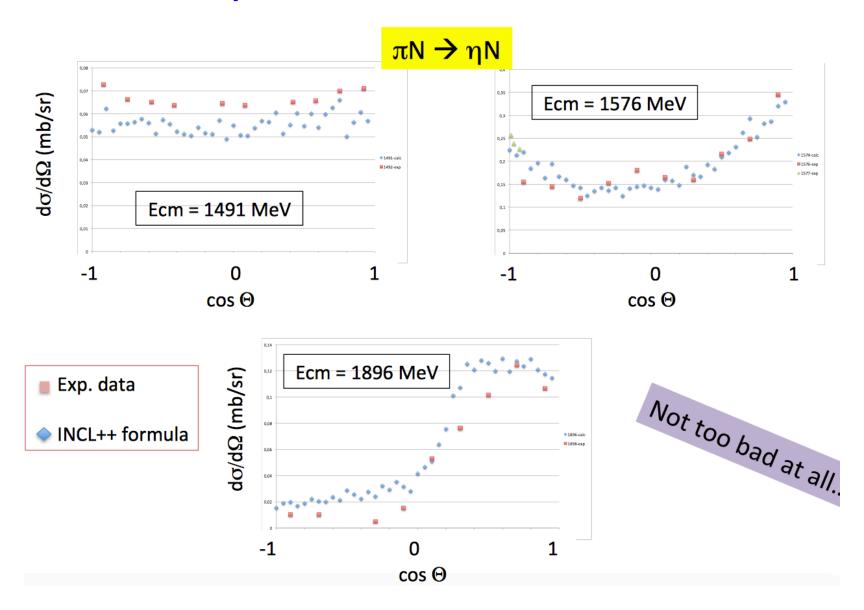
- NeutronHP has been merged with its analogue for high precision charged particle interactions, ParticleHP
 - now handles n, p, d, t, α
 - new code is ParticleHP, but NeutronHP kept for backward compatibility
 - mostly for E < 20 MeV, but some data up to 200 MeV

Database

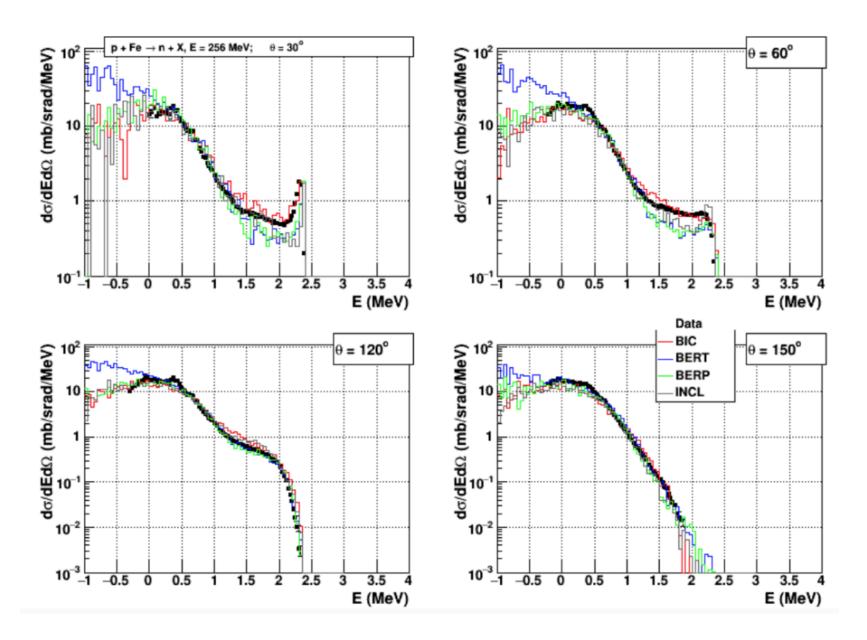
- G4NDL4.5 now required
- to reduce size data files stored in zlib format
- code automatically unpacks this, but to get human readable data, you need to run zlib (http://www.zlib.net)

ParticleHP - Problems Solved

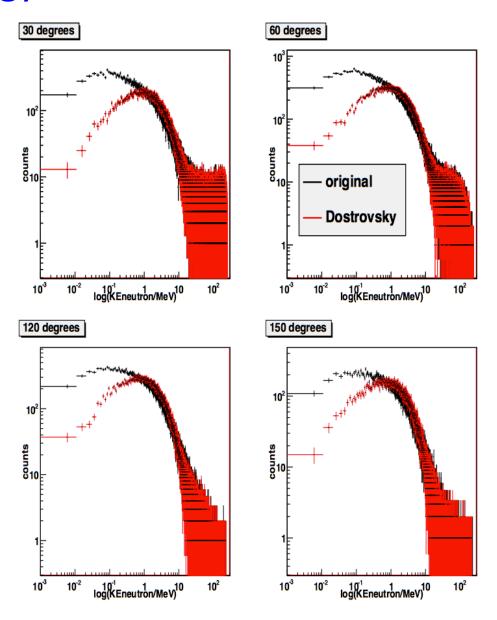
- Reproducibility now restored in multithreaded running
 - Release 10.2
- Large memory consumption problem solved
 - Release 10.3


GND/GIDI/LEND

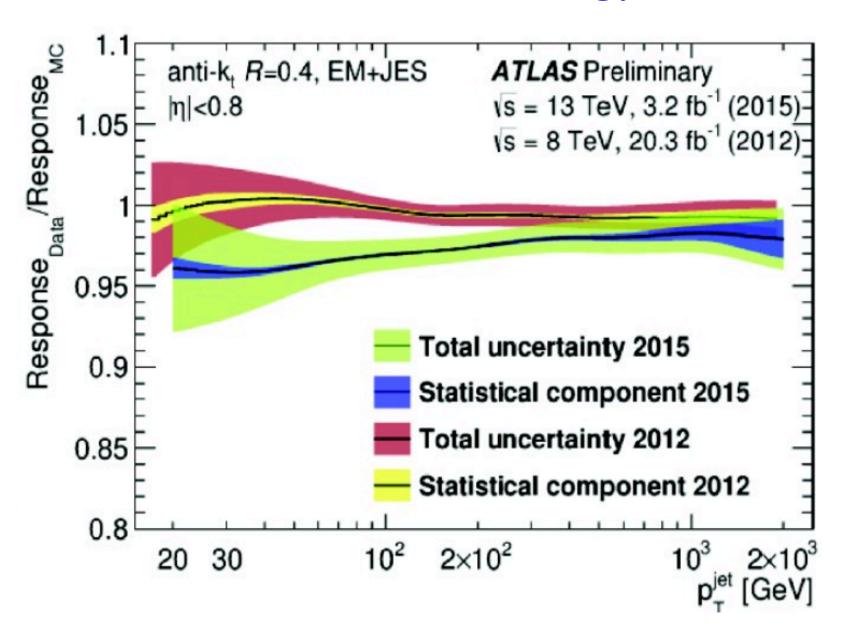
- Generalized Nuclear Data (GND)
 - new low energy particle database with more modern, rationalized format
 - includes all ENDF/B-VII data
 - upgrade of Generalized Interaction Data Interface (GIDI) used to access new GND format
 - to be delivered late 2015/ early 2016
- Can already try the new data
 - use G4LEND neutron models
 - or G4HadronElasticPhysicsLEND physics constructor
 - need to download data from ftp: //gdo-nuclear.ucllnl.org/pub


Cascade Models

- INCL++
 - extended to include production of η and ω mesons
 - several INCL-based physics lists now available (as alternative to Bertini)
- Bertini
 - Evaporation code improved to use Dostrovsky model correctly
 - long-time over-simplification resulted in neutron overproduction at low energies


η Production with INCL++

Low Energy Neutron Production in Bertini (old)


Low Energy Neutron Production in Bertini (new)

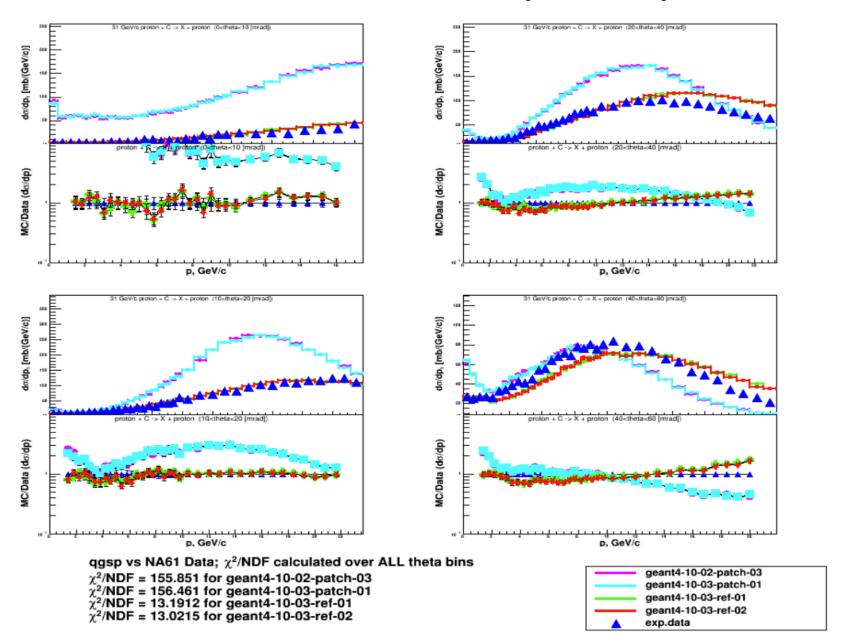
High Energy Models

- Recent analysis by ATLAS and CMS has shown a shift in ratio of simulated to measured response at jet energy scale
 - between Run 1 (8 TeV) with G4 9.4
 and Run 2 (13 TeV) with G4 9.6
- FTF and Bertini used by both ATLAS and CMS physics lists
 - despite many changes to Bertini, little effect on showers
 - FTF is now the suspect
- Created new physics list for ATLAS
 - transition from BERT to FTF moved from [4–5] GeV to [9-12]
 GeV
 - restores some lost shower width
 - wait to see results of new ATLAS analysis

Problem at the Jet Energy Scale

FTF Model

- Has been the "go-to" model for high energies
- Work continues by Vladimir Uzhinsky and Alberto Ribon
 - new hadron fragmentation functions, other physics improvement
 - parameter tuning, such as mean P_t
- However, may have reached point of diminishing returns
 - still small improvements in agreement with thin target data
 - but departures from calorimeter data
 - now using Bertini at higher energies (up to 12 GeV) to get better agreement with hadronic showers
 - time to go to a more theory-driven model?


QGS Improvements

- QGS has lain dormant for many years
- Work resumed (by Vladimir Uzhinsky) because
 - model is more theoretically based
 - can be extended to much higher energies (multi-Tev)
 - FTF model may be reaching its limits

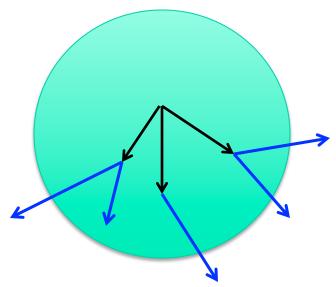
Changes

- use constituent quark masses (instead of massless)
- Pomeron and Reggeon parameters set up according to Kaidalov and Poghosyan
- quark exchange improved
- some parameter tuning

QGSPP: 31GeV/c p+C -> p

In Progress

Neutrino Interactions


- Began work two years ago on interface of Geant4 to GENIE
 - goal: allow GENIE neutrino generator to use Geant4 hadronic models for fragmentation and final state interactions within nucleus following initial interaction
 - will allow greater variety of models than now available in GENIE
 - interface to Bertini precompund model completed
 - interface to full Bertini nearly ready
- Second step: interface of GENIE to Geant4
 - goal: allow Geant4 to use GENIE's neutrino-nucleus interactions in a Geant4 neutrino process
 - planned for late 2017
- Third step: once neutrino scattering processes are in place, use new Geant4 biasing techniques to do neutrino propagation

Geant4-Genie Interface

Neutrino interaction with nucleon in nucleus (Genie)

intra-nuclear mesons and nucleons

Geant4 model for propagation and re-scattering (Bertini)

final state mesons and nucleons

User Variation of Model Parameters

- Requested by several user communities
 - most notably for studies of neutrino production targets
- A means of establishing systematic errors for some models and allowing parameter space to be searched for best agreement with data
- Prototype interface now ready
 - Bertini cascade first model to be tested
 - Only two parameters allowed to be varied in test
 - nuclear radius, intra-nuclear cross section scaling
 - Other models to follow later
- Interface to be offered on a restricted basis
 - only users working with model developers

Coming Attractions

"High Precision" Gamma-nuclear Model

- G4LEND model can access gamma-induced reactions in Generalized Nuclear Data (GND) database
 - up to 100 MeV
 - large number of targets
- Perfect solution to current problem of poor agreement of Bertini gamma reactions at low energy
 - Bertini not really intended for such low energies, but with GND data—driven solution nuclear structure feature can be simulated
 - can envision a hybrid model with G4LEND below 100 MeV and Bertini above

Low Energy Gamma-nuclear (GDR and below)

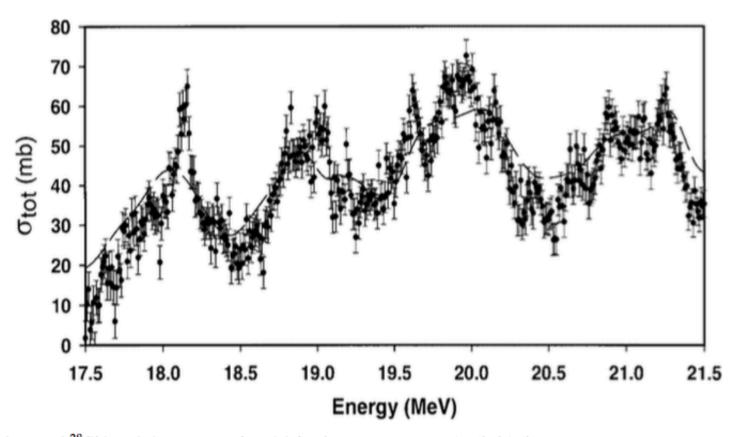


Fig. 2 The observed 28 Si(γ , abs) cross section (\bullet) in the energy range 17.5–21.5 MeV

Improved Electro-nuclear Models

- Increasing need for better virtual photon exchange models
 - from BNL, SLAC, Jefferson Lab, heavy photon search experiments, future electron-ion colliders
- Current Geant4 models are approximate
 - assume exchanged virtual photon can be converted to real photon before interaction with nucleus
 - OK at low and medium energies but not for deep inelastic scattering
- Will need to develop full 4-momentum transfer of virtual photons
 - and deal with off-shell nuclear targets

Validation and Testing

- Work proceeding on new validation framework
 - using latest web technology
 - with on-demand generation of plots
 - also to be used for EM
- Development of infrastructure to allow generation of MC predictions with error band
- New test suite for hadronic cross sections with data
- TARC experiment simulation to be converted to Geant4 test15 for system testing
 - for low to medium energy neutrons