OHB System AG Massimo Tipaldi 08.12.2016, MBSSE Workshop ESA/ESTEC

SPACE SYSTEMS

Model checking techniques applied to spacecraft mode management

We. Create. Space.

Agenda

- Background on model checking
- Case study
 - MTG Satellite Mode Management
- Conclusion
 - Benefits and open points

Background on model checking

- Model checking as formal verification method
 - Given a model and a set of properties, it searches for traces of the model that violates the properties (calculated from a set of initial states)
 - Classes of linear time properties: invariants, liveness, safety, deadlocks
- Many model checkers available: JavaPathFinder, NuSMV, SPIN, UPPAAL, CWB-Concurrency WorkBench (CCS)

Background on model checking

• *Model based approach*: generating a new system requirement representation:

FROM:

TO :

- System-level requirements
- SysML Diagrams
- Lengthy description

 Concise and verifiable models (CCS, Temporal Logic, Petri Nets)

- Use the resulting formal model to *mathematically* calculate system's behaviour for V&V purposes from the early phases of space projects
- CCS (Calculus of Communicating Systems)
 - Process algebra language for describing communication and concurrent system
 - Expressiveness to describe dynamic behaviors and interactions with simple constructs
 - Operational conditions modelled and verified by enabling suitable actions

Case study: MTG satellite mode management

Case study: MTG satellite mode management

proc SAM = (startSamMode.'startSamAlg.SAM)+(reStartSamAlg.SAM)
+(subModeTSAEntering.'subModeTSAOk.SAM)+(subModeRWSAEntering.'subModeRWSAOk.SAM)

proc SAM_ALG = startSamAlg. (subModeInitAuto.((ThrusterDetFalse.'ThrusterDetFalse.(RWAvail4False.'subModeTSAEntering.SAM_ALG +RWAvail4True.'subModeRWSAEntering.SAM_ALG)) +ThrusterDetTrue.(OmegaLowerThanTreshFalse.'reStartSamAlg.SAM_ALG+(OmegaLowerThanTreshTrue. (RWAvail4False.'subModeTSAEntering.SAM_ALG+RWAvail4True.'subModeRWSAEntering.SAM_ALG)))) +(subModeInitRWSA.RWAvail4True.'subModeRWSAEntering.SAM_ALG)

CCS code snippet from AOCS SAM (Sun Acquisition Mode) Sub-mode

Case study: MTG satellite mode management

- Verified properties:
 - Deadlock-Free
 - Spacecraft Angular Rate > Threshold => AOCS in SAM-TD Mode
 - Spacecraft Angular Rate < Threshold => AOCS in SAM-TSA Mode
 - LEOP Phase ends successfully in nominal case (usage of Reaction Wheels)
 - GEO Spacecraft Mode Transitions
 - Failure mechanism for FDIR L3 & L4

Conclusion

- Model checking as formal method to model and verify system-level requirements and artifacts from the early phases of a project
 - deadlock / race conditions
 - system behavior according to the specs
- Suitable for complex systems and concepts, e.g. spacecraft autonomy
- Further investigation :
 - states explosion problem
 - straightforward creation of models from e.g. SysML diagrams
 - model checking into the ECSS process/product requirements & space project tool chain

OHB System AG Massimo Tipaldi 08.12.2016, MBSSE Workshop ESA/ESTEC

Thank you!

massimo.tipaldi@ohb.de

santone@unisannio.it

SPACE SYSTEMS

Model checking techniques applied to spacecraft mode management

We. Create. Space.