Components for CAN-based systems Texas Instruments

Sriram Narayanan sriram.narayanan@ti.com

HiRel Products Texas Instruments

Overview

- TI Space Overview
- TI Interface Products
 - CAN Transceiver: SN55HVD233-SP
- Distributed Telemetry
 - RTU & Microcontroller
 - Sensors
- Summary

TI in Space

Texas Instruments

TI Space Products

Innovating your space solution with leading-edge RHA and QMLV products

50+ years experience in the Space Market

- Product life cycles that last 25 years+
 - No obsolescence for convenience
- A Global Company
 - 8 QMLV-certified Wafer Fabs and growing
 - Dozens of Design Centers around the Globe
 - Industry's largest Sales / Applications team in the Field
- TI investing to grow Space business
 - Space team size has doubled over the past three years
 - Re-investing in the entire space portfolio to bring more of the Space signal chain to market

TI's Radiation Test Capability

• Single Event Effects Testing (SEE)

- Quad-site motherboard connected to PXI system allows testing both destructive and non-destructive events:
 - Destructive SEL, SEB, SEGR
 - Non-Destructive SEU, SET, SEFI
- In house capability and expertise ensures that future space products "-SP" will have the necessary data to fly in space

• TID Testing (HDR and LDR)

- Production automated test setup is used for pre and post electrical testing for evaluating HDR and LDR TID degradation
 - Production test setup ensures coverage and reliability
- TI's Co-60 source is leveraged to accelerate RHA releases for CMOS devices

• Radiation Data and Support

 Radiation reports can be found at <u>www.ti.com/radiation</u> and under the individual product under technical documents

PXI System at TAMU

Co-60 HDR Gamma Cell

TI CAN Transceiver: SN65HVD233-SP

Space Qualified Interface and Clocking

Released

Development

SN55HVD233-SP

+3.3V CAN Transceiver

Features

- Compatible with ISO 11898-2
- 5V tolerant I/O with 3.3V Supply
- Bus pin short-circuit protection to ±36V
- ESD protection exceeds 16kV
- Designed for signaling rates up to 1 Mbps
- Glitch free power up & power down protection
- Lowest standby current (600uA max)
- Low Propagation delay: 85 ns (LH), 120 ns (HL)
- Analog Slew Rate Control via RS pin
- -7V to 12V Common Mode Range
- 8 Pin CFP
- ECCN: EAR99
- Release to market: December 2017

Performance

- TID = 50kRad(Si) RHA (L-level)
- SEL Immune: LET 86 MeV.cm2/mg @ 125C
- QMLV certified

3.3-V CAN Bus Transceiver

Package

- 8-pin Ceramic HKX CQFP package
- 6.48 mm x 6.48 mm

Functional Block Diagram

- Compatible with the ISO-11898 specification
- **Diagnostic loopback:** redirects (D) \rightarrow (R)
- Harsh environments: bus-pin fault protection > ±36 V

9

SN55HVD233-SP EVM

- EVM available at product release
 - SN55HVD233/EM installed by factory
 - Release to market: December 2017
- Benefits
 - Lab verification of CAN interface compatibility with FPGA, ASIC, or uC
 - Thermal testing
 - Debugging
 - Layout and Schematic reference for designing with TI Space CAN transceiver
 - EAR99 for easy shipment to Europe

Distributed Telemetry

System Architecture: Cars to Spacecraft

Src: F.T. Lopez and P.Roos, A VHDL implementation of CANopen Protocol for CAN Bus On Board Spacecraft

- **Car**: Engine control, Brakes, A/C, Transmission, Seat position, Instrument panel
- Satellite: AOCS Sensors & Actuators, Payload, Thermal control, Command & Data, ...
- CAN Bus: Reliable bus standard with latency constraints

AOCS: Attitude, orbit control system

Automotive Interface Coexistence: CAN + I2C

- Vehicle interface processor (VIP):
 - Enable support power devices, system health monitoring temperature, voltage, and currents
 - May be analogous to remote terminal units is spacecraft
- CAN bus and other interfaces (I2C/LIN) coexist in automotive designs

13

Sensor

Microcontroller: Remote Terminal/Telemetry Unit

RTU interfacing to sensors and actuators, and controlling a load

• RTU Functions:

- Gather from sensors (temp, pressure, digital status)
- Signal conditioning for sensor data
- Control AOCS actuators and sensors
- Distribute power to heaters

• Example: AOCS subsystem

- Acquires sensor data, control actuators
- Distribute power to a load

• MCU's enable "smart" RTU

- Reusable architecture across subsystems

MSP430FR5969-SEP

Radiation Tolerant MSP430 with FRAM

Features

- Ruggedized for space and radiation environments
- 16 MHz, 16-bit RISC CPU
- Wide Supply Voltage Range 1.8V to 3.6V
- Ultra low power consumption: Shutdown Mode (LPM4.5): 0.32 uA
- Wake up from Standby Mode in $7\mu s$
- 64KB FRAM with free program code / data memory partitioning
 - Nearly infinite (10¹⁵) write cycles
 - 160x faster than Flash (>2MB/s)
 - 250x less power in writes
- 2 KB SRAM
- Signal conditioning
 - ADC 12 bit, 16 channel: 200 ksps and 150uA consumption
 - PWM output
 - Analog comparator 15 channels, voltage hysteresis, reference generator
- Package: 52 (48) TQFP AND QFN

Applications

• Spacecraft distributed sensing & control

Radiation Performance

- TID = 50kRad(Si)
- SEL Immune to LET = 72 MeV.cm2/mg at 125 C

Benefits

- Key component of distributed sensing & control
- Unique capabilities in small form factor design
- Integrated signal conditioning & nonvolatile memory
- Guaranteed TID and SEL performance

TMP112-SP* I2C PCB Monitor Temp Sensor

• High Accuracy

- 1.0°C (max) Accuracy From -40°C to+125°C
- 0.5°C (max) Accuracy From -25°C to 85°C
- True 12 Bit Resolution Measures Temp changes to 0.0625°C
- Highly accurate PSR through supply range: 0.0625°C/V (typ)

• Low Voltage & Low Power

- Vs=1.4V to 3.6V
- 10µA Active, 1µA Shutdown
- Ceramic LCCC package
- Radiation: SEL (85 MeV.cm2/mg at 125 C)

Evaluation Boards in Action

• Radiation tolerant MCU

- MSP430FR5969-SEP
- Nonvolatile memory
- I2C interface

• Digital temp sensor

- Space qualified (2018)
- 12-bit ADC: 0.0625 C resolution
- 1.4 V to 3.6 V Supply
- 3 mm x 3 mm form factor

TMP461-SP*

1.8V, High-Accuracy, Low-Power Remote Temp Sensor

- Eliminates offset error due to series resistance
- Programmable non-ideality factor
- Programmable digital filtering
- Remote diode accuracy: +/- 0.75 C
- Local temp accuracy: +/- 1 C
- Resolution: Temp changes to 0.0625°C
- 0.0625°C/V (typ)
- Vs=1.7 V to 3.6V, 35 uA operating current
- Ceramic HKU package
- SEL (60 MeV.cm2/mg at 125 C), 50 kRad

18

TMP461-SP*: Remote Diode Temp Sensor

CubeSat Onboard Processing Validation Experiment using JPL Payload

Figure 2. COVE Payload Block Diagram

* Part numbers and release dates are subject to change

Summary

• CAN physical layer transceiver

- SN65HVD233-SP
- 50 kRad TID, 86 MeV-cm2/mg
- Available under EAR99
- Pin-2-pin compatible with other transceivers in market

• Distributed Telemetry

- Analogous to automotive system architecture
- MSP430FR5969-SEP: Radiation tolerant microcontroller
- Digital temperature sensors using I2C
- Decentralized sensing for voltages, currents

