

CAN @ TESAT — CAN IN TELECOM PAYLOAD PRODUCTS

PROPRIETARY INFORMATION

ESA Workshop CAN in Space, June 16th 2017

© Tesat-Spacecom GmbH & Co. KG reserves all rights including industrial property rights, and all rights of disposal such as copying and passing to third parties

OUTLINE

- » Tesat's Product Portfolio
- » CAN implementation details in Tesat's products
- » CAN development status and outlook on future projects

TESAT'S PRODUCT PORTFOLIO

PIONEERING WITH PASSION

TESAT'S PRODUCT PORTFOLIO

PIONEERING WITH PASSION

AMPLIFIER PRODUCTS: MPMs, TWTAs and SSPAs

- » RF amplifiers based on TWT are still broadly used in satcom payloads.
- » RF power and predistortion is provided by LCAMPs associated to individual tubes.
- » TWT and LCAMP supplied by electronic power conditioner (EPC) connects the units to the main bus power supply.
- » Similar arrangement in SSPAs, assembled from solid-state based amplifier stage and DC converter unit.
- » Equipment control typically by individual TM/TC interface.

DUAL TWTA

X-Band SSPA

PIONEFRING WITH PASSION

TESAT PRODUCTS: PASSIVE, DATALINK AND LASER

- » Innovative filter concepts and high performance waveguide switches to support the customer in providing best satellite performance.
- » Fully digital modulator for Gigabit per second range and universal TTC transponder product family for S-, Ku-, and Ka-Band.
- » Worldwide unique laser communication terminals: Commercial breakthrough with EDRS.
- » Housekeeping functions for all types of equipment are required today or will be of interest in the future.

OMUX

Switches

Ka-Band QPSK Modulator

S-Band TTC
Transponder

Design Model of a Laser Terminal

CAN IMPLEMENTATION DETAILS IN TESAT'S PRODUCTS

- » Main bus (MB) Trend towards 100 Volt.
- » RF_{IN} and RF_{X} Low power, SMA or SMA-K for Ka-Band.
- » HV − Limited number of high voltage supply configurations.
- » Mechanical and thermal interface limited number of options.
- » TM/TC Large variety of options, impact on equipment design.

TM/TC FUNCTIONS: MICROWAVE POWER MODULE (MPM)

- » Set of TM/TC-functions is limited.
- » TM/TC to each of the MPMs (EPC/ LCAMPs) by
 - » Pulse commands
 - » Bi-level / analog TM
 - » Proprietary serial interfaces
- » Defined by platform manufacturer, implemented by equipment manufacturer.
- » Large variety of protocols.
- » Equipment standardization is limited.

FLEXIBLE PROGRAMMABLE MPM — EQM

» The FPM is the latest generation of Tesat's microwave amplifiers for satcom applications.

» First unit successfully qualified in 2016 in the frame of an ESA Artes 3/4 activity.

- » Key parameters:
 - » Configurable output-power until -3 dB via CAN
 - » TWT 5 collector design for improved efficiency
 - » I/F PCB with analog TM/TC and CAN Interface with discrete isolated transceiver
 - » Interface standardization is a key parameter to reduce cost and improve project schedule.
 - » CAN bus has been selected for internal communication between subunits.
 - » CAN bus is used for programming purposes during manufacturing process.

FRAME MAPPING

Object ID = Class ID + Instance ID

PIONEERING WITH PASSION

STANDARDIZED HANDSHAKE

- » Multi-Master vs. Master-Slave concept
 - » Slave node only transmits data if requested by the master
 - » To keep it simple, MPMs are assumed to be operated as slaves on the bus
 - » MPMs may also be used in a Multi-Master environment

Handshake for telecommand

Handshake for telemetry

REDUNDANCY MANAGEMENT: BUS SELECTION HEART BEAT

- » Master sends periodically a broadcast CAN message including the Heart Beat protocol
- » The master (Heart Beat producer) is responsible for issuing the heartbeat frame within the specified time.

Heart Beat Bus selection process

State machine Heart Beat

REDUNDANCY MANAGEMENT: BUS SELECTION EDGE DETECTION

» Structure of CAN front-end for slave nodes

» State machine for automatic bus selection in slave nodes

- » Implementation of a "discrete" isolated transceiver, due to non qualified radiation hardened integrated transceivers at the time of development
 - » Maximum data rate: 125 kbps
 - » Limited electrical performance
 - » Standard parts, no export issues
 - » "on stock"
 - » MDM connector
 - » Double Isolation requirements
 - » 7 bit hardware address (Node ID), configurable at connector / harness level

DATA RATE AND GROUNDING CONSTRAINTS

- » Depending upon platform requirements the main bus return (MB-) might be isolated or connected to chassis ground.
- » Grounding constraints may require the use of optocouplers for galvanic isolation in the Rx/Txsection. Performance of optocouplers limits the maximum bus speed.
- » Current CAN bus implementation supports 50, 125, 250, and 500 kbps
 - » 250 kbps might become standard for equipment w/o need for galvanic isolation
 - » 125 kbps feasible with optocouplers and limited network size, 50 kbps as fallback
 - » 1 Mbps not supported in current implementation.

PIONEFRING WITH PASSION

GALVANIC ISOLATION

- » Optocoupler for galvanic isolation
 - » Limitation of bitrate
- » Experimental measurement:
 - » Signal from Tx to Rx:

 Latency reduction from 2,36 µs to 1,06 µs (including quantization time, electrical propagation delay)
- » Options:
 - » transformer principle, e.g. iCoupler
 - » avoid galvanic isolation for serial interface!

Delay with Isolink
Optocoupler OLS300

Delay with Isolink Optocoupler OLS500

CONFORMANCE TEST

- » Executed conformance test to ISO11898-2 includes the following considerations:
 - » Dominant/recessive input threshold of CAN node
 - » Internal resistance of CAN_L and CAN_H
 - » Internal differential resistor
 - » Measurement of the internal delay time
 - » Input capacity

$$C_{in} = \frac{\tau}{R_i} = 62 \ pF$$

DIONIFEDING WITH PASSION

INTEGRATED TRANSCEIVER

- » Current standard in Tesat's LCAMP design is based on integrated transceivers and supports data rates up to 500 kbps with LARS2 ASIC
- » 250 kbps and 500 kbps are currently asked for by TESATs customers
- » A dedicated CAN test unit has been developed and manufactured to support CAN bus system tests w/o the need of further RF equipment.

CAN DEVELOPMENT STATUS AND OUTLOOK ON FUTURE PROJECTS

» SOC discussion regarding ESCC-E-ST-50-15C

9.1 COB-ID assignment

- a. The address(es) of the master(s) shall have the highest priority(ies).
- b. Slave node address ID(6).. ID(0) assigned to each node shall conform to clause 10 of this document.

NOTE

NODE-ID 0 is used to broadcast all nodes in the network. It does not use it.

- » According to Table 9-13 of ECSS Node-ID 0 is reserved for broadcasting NMT, SYNC and TIME STAMP objects.
- » For PDO broadcast Tesat's CAN Bus implementation utilizes Node-ID 127.

» SOC discussion regarding ESCC-E-ST-50-15C

9.4.6.1 Module control services

a. Autonomous operations of slave nodes shall not be used.

NOTE This implies that the use of remote node start, stop, enter pre-operational, reset and reset communication services is forbidden.

- » Tesat slave nodes with CAN interface currently enter operational state automatically after unit is switched on via separate TC.
- » Compliant to the above note (no use of remote node start, stop, enter pre-operational, reset and reset communication services).
- » Not compliant to the requirement? Maybe misinterpretation of the term "autonomous operations".

DIONIEEDING WITH DASSION

- » Regular MPM projects indicate strong interest from European and non-European satellite manufacturers
- » Laser Communication Terminal for internal communication between subunits
- » Heinrich Hertz Satellite (H2Sat) Proposed equipment for scientific payload:
 - » Flexible Programmable MPM
 - » Dual Flex MPM
 - » FlexINET, FlexOMUX
 - » TM/TC interface with CAN bus implemented according to ECSS standard.
 - » Protocol framework similar to other Tesat payload products (e.g. MPM) → only functional adaptation required.
 - » PLIU

FlexINET Control Unit

PIONEERING WITH PASSION

FUTURE PROJECTS

» CAN System Heinrich Hertz Satellite

- » System Heinrich Hertz Satellite
 - » CANopen protocol
 - » 125 kbps data rate
 - » Bus selection through edge detection
 - » Discrete TM/TC interface
 - » TC switch on/off the device
 - » TM on/off status

PAYLOAD INTERFACE HARDWARE UNIT (PLI-HU)

Main Function of PLI-HU:

- » Builds a bridge between the platform MIL-STD-1553 bus and the payload CAN bus.
- » Providing an acyclic TM/TC interface via MIL-STD-1553 Bus (Telecommand forwarding from MIL-STD-1553 Bus to CAN Bus. Telemetry forwarding from CAN Bus to MIL-STD-1553 Bus)
- » Periodic, autonomous acquisition of telemetry from CAN Bus (telemetry is stored in PLI-HU internal nonvolatile shared memory, which is accessible via MIL-STD-1553 Bus).

Parameter	Value
Housekeeping TM/TC Interface	MIL-STD-1553
Payload Interface	CAN-Bus
Bus voltage	50 V
Power consumption	1.8 W typ.
Dimensions	168 x 58 x 86 mm ³
Mass	0.7 kg
In-orbit lifetime	15 years
Development status	Prototype

PLI-HU Prototype

THANK YOU FOR YOUR ATTENTION

Christoph Schieber
Development Engineer Power Supply
+49 7191 930-2699

Christoph.Schieber@tesat.de

Tesat-Spacecom GmbH & Co. KG Gerberstraße 49 71522 Backnang www.tesat.de