
Open source implementation of
ECSS-CAN Bus Extension Protocol for CubeSats

CAN in Space workshop
14-16 June 2017 at SITAEL, Moli di Bari, Italy
Artur Scholz, Visionspace Technologies GmbH

2017-06-16ECSS-CAN for CubeSats2

Motivation

Chart created Oct 2016 using data from M. Swartwout
https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database

2017-06-16ECSS-CAN for CubeSats3

Overview

● CubeSats are lacking a space-grade command and control bus

● Traffic is moderate but most be utmost reliable and real-time
● Implementable in low-cost, constrained microcontroller
● Bus interaction should be simple and practical

2017-06-16ECSS-CAN for CubeSats4

Bus candidates

● MIL-STD-1553
● UART
● SPI
● I2C
● USB
● SpaceWire
● CANBus Extension minimal implementation

2017-06-16ECSS-CAN for CubeSats5

ECSS-E-ST-50-15C minimal implementation for CubeSats

2017-06-16ECSS-CAN for CubeSats6

Communication model

4.5 Communication model

The communication model is based on a CAN Network master connected to up
to 126 slave devices.

7 bit ID => 128 (0..127)
0 = broadcast (not used)
1 = master
2-127 = slave

Cross-coupling
missing?

2017-06-16ECSS-CAN for CubeSats7

OBC

EPS COM P/L

Communication model - CubeSat

Sensor

2017-06-16ECSS-CAN for CubeSats8

Physical layer - topology

5.1.1.1 General

A spacecraft system using CAN Network shall use either of the following
physical topologies:

1. A Linear multi-drop topology…

2. A Daisy chain topology...

2017-06-16ECSS-CAN for CubeSats9

120 Ohm
terminating
resistor

No cables
No connectors
Medium is copper
tracks and pins

Physical layer – topology - CubeSat

2017-06-16ECSS-CAN for CubeSats10

Data link layer

● 11-bit CAN ID, no ID extension
● No RTR (remote transmission request)
● No remote and overload frame
● Only data frame and error frame

2017-06-16ECSS-CAN for CubeSats11

CANopen higher layer protocol

● Service data objects
● Process data objects
● Synchronization object
● Emergency object
● Network management objects

● Module control services

● Error control services

● Bootup service

● Node state diagram

● Electronic data sheets
● Device and application profiles
● Object dictionary

2017-06-16ECSS-CAN for CubeSats12

CANopen higher layer protocol

● Service data objects
● Process data objects - PDO
● Synchronization object - SYNC
● Emergency object
● Network management objects

● Module control services

● Error control services - HB

● Bootup service

● Node state diagram

● Electronic data sheets
● Device and application profiles
● Object dictionary - OD

Minimal implementation

2017-06-16ECSS-CAN for CubeSats13

Redundancy management and monitoring

4.8.1 Overview

The selective bus access architecture allows communication on one bus at a
time, whereas the parallel bus access architecture allows simultaneous
communication on both a nominal and a redundant bus.

2017-06-16ECSS-CAN for CubeSats14

Redundancy management and monitoring

4.8.2 Node Monitoring via … Heartbeat Messages

...a node automatically transmits its communication state…

9.4.6.1 Module control services

Autonomous operations of slave nodes shall not be used.

6.5.2 Error control service

All slave nodes shall consume the redundancy master Heartbeat message.

4.8.3 Bus monitoring and reconfiguration management

The Redundancy Master defines the bus to be considered active by periodic
transmission of CANopen Heartbeat messages on the active bus. The slave nodes
monitor the presence of the Heartbeat message from the master to determine the
active bus.

2017-06-16ECSS-CAN for CubeSats15

Redundancy management and monitoring

8.3.2 Start-up procedure

After a node power-on or after hardware
reset, the node shall use the bus defined by
the Bdefault parameter as the active bus.

9.4.9.2 Bootup service

Nodes shall not produce Bootup Service
messages.

2017-06-16ECSS-CAN for CubeSats16

Redundancy management and monitoring

8.3.3 Bus monitoring protocol

The Redundancy Master shall periodically produce CANopen Master
Heartbeat messages on the active bus.

The RM shall switch over and operate on the alternate bus by…:

1. Stopping transmission of HB messages on the active bus, and

2. Starting transmission of HB messages on the alternate bus

Each slave node shall be a consumer of the Master HB messages

Each slave node shall periodically transmit CANopen HB messages on the
bus it considers being the active.

2017-06-16ECSS-CAN for CubeSats17

Redundancy management and monitoring

2017-06-16ECSS-CAN for CubeSats18

Redundancy management and monitoring

2017-06-16ECSS-CAN for CubeSats19

Time distribution

7.1.1 Time code formats

Each device … that maintains time information shall use Spacecraft Elapsed
Time (SCET)… The time code format .. is the CCSDS Unsegmented Time
Code (CUC).

8bit fine time→ 100 ms = 100 * 256/1000 = 25.6 → 25

2017-06-16ECSS-CAN for CubeSats20

Time distribution

7.1.2 Spacecraft elapsed time objects

Each device (that maintains time information) shall implement one Local
SCET Set and one Local SCET Get object in the Object Dictionary.

7.2.2 Time distribution protocol

The Time Producer shall map the Local SCET Get object to a dedicated
Spacecraft Time PDO transmit PDO...to convey its local time to the time
consumers… There shall be only one Spacecraft Time PDO in a particular
system. The Time Consumers shall map the Local SCET Set objects to the
Spacecraft Time PDO receive PDO.

Each time consumer shall map the Local SCET Get object … to a dedicated
Local Time PDO...to convey its local time on the CAN Network.

2017-06-16ECSS-CAN for CubeSats21

Minimal implementation

9.2 Object dictionary

...it is acceptable that the CANopen objects...are hardcoded...

9.3 Minimal set CANopen objects

...only 4 Transmit and 4 Receive PDOs are implemented.

PDOs
PDO mappings
SYNC
HB

2017-06-16ECSS-CAN for CubeSats22

Minimal implementation

9.4.1 Minimal set protocol definitions

Communication between master and slave nodes shall be…

1. Transmission of configuration data or commands to a slave, is called
unconfirmed command.

2. Start of a data transmission from slave is called telemetry request.

… data bytes shall contain the command itself… to identify the process to
be performed by the slave.

2017-06-16ECSS-CAN for CubeSats23

Minimal implementation
1400h = RPDO1
281h = TPDO2 + id 1

1801h = TPDO2
281h = TPDO2 + id 1

0100 = RPDO1

2017-06-16ECSS-CAN for CubeSats24

Minimal implementation

9.4.3 Minimal set protocol data transmission

Data transmission exchange shall be triggered by either:

1. A Telemetry Request message

2. Or a SYNC message

When telemetry request data bytes are used...(they) shall contain the
telemetry register(s) to be returned...

2017-06-16ECSS-CAN for CubeSats25

Minimal implementation1401h = RPDO2
302h = RPDO2 + id 2

1801h = TPDO2
302h = RPDO2 + id 2

0110 = RPDO2

0101 = TPDO2

1801h = TPDO2
282h = TPDO2 + id 2

1401h = RPDO2
282h = TPDO2 + id 2

2017-06-16ECSS-CAN for CubeSats26

Prototype implementation – CANopen objects

Slave Master

Object Function COB-ID Function COB-ID

TPDO1 Local SCET Get TPDO1 + slave id Spacecraft SCET Get TPDO1 + master id

RPDO1 Local SCET Set TPDO1 + master id

TPDO2 - - Send TC RPDO2 + slave id

RPDO2 Receive TC RPDO2 + slave id - -

TPDO3 Send TM TPDO3 + slave id Send TM_REQ RPDO3 + slave id

RPDO3 Receive TM_REQ RPDO3 + slave id Receive TM TPDO3 + slave id

SYNC Send SYNC 80h

HB Send HB 700h + slave id Send HB 700h + master id

2017-06-16ECSS-CAN for CubeSats27

Prototype implementation – PDO data field

PDO data field

Function code Data

2 Bytes 0 to 6 Bytes

65536 TCs requests + 6 bytes of data each
65536 TM REQUESTS

2017-06-16ECSS-CAN for CubeSats28

Prototype implementation - scenario

Master sends HB message every 250ms, fixed

Master sends SYNC every 5 sec, fixed

Master loops:
sends SCET PDO every ~10 sec

sends dummy TC every ~0.1 sec

sends dummy TM REQ every ~0.1 sec

Slave toggles LED on HB

Slave toggles LED on SYNC

Slave toggles LED on SCET

Slave responds to TM REQ with dummy TM

2017-06-16ECSS-CAN for CubeSats29

Prototype implementation - transceiver

● Texas Instruments SN65HVD23x 3.3-V CAN Bus Transceivers
● Fully ISO11898-2 compliant, supports 1 Mbps
● 3.3V power supply
● In high-impedance when unpowered

2017-06-16ECSS-CAN for CubeSats30

Prototype 1 - overview

● 8-bit Atmel AVR
● Atmega16m1
● C language
● Selective bus architecture

2017-06-16ECSS-CAN for CubeSats31

Prototype 1 – code snippets

2017-06-16ECSS-CAN for CubeSats32

Prototype 2 - overview

● 32-bit ARM
● STM32F405RGT6
● Micropython language
● Parallel bus architecture

2017-06-16ECSS-CAN for CubeSats33

Prototype 2 – pyboard

from pyb import LED
from pyb import delay

led = LED(1)

while True:
 led.toggle()
 delay(1000)

2017-06-16ECSS-CAN for CubeSats34

Prototype 2 – code snippets

2017-06-16ECSS-CAN for CubeSats35

Prototype 2 – code snippets

2017-06-16ECSS-CAN for CubeSats36

Prototype 2 – code snippets

2017-06-16ECSS-CAN for CubeSats37

Conclusion

● Both implementation work satisfactorily
● Needs to be tested with several slave nodes and data processing

● All code is made available open source and free of charge
● Python is great for prototyping
● Embedded C is needed for constraint environments

● ECSS minimal implementation needs further clarification, e.g.
Master Redundancy Management, PDO exchange

2017-06-16ECSS-CAN for CubeSats38

➢librecube.net → Contribute → Work Packages → code repository
➢Feedback in the forum, mailing list, or in repository

