

DEFENCE AND SPACE

Jean DALENQ 14th June 2017

Agenda

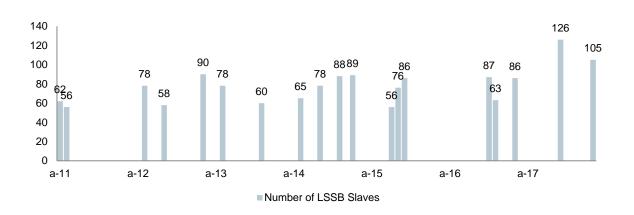
Overview of use of CAN bus at Airbus Defence and Space

- Eurostar E3000 and Eurostar Neo Payload Serial Bus
 - Mission
 - Eurostar E3000 and Eurostar Neo implementation
 - Development status
- Eurostar Neo Platform Modules Communication Bus
 - Mission
 - Development status
- Other uses of CAN bus
- Developments Feedbacks

Eurostar E3000 and Eurostar Neo Telecom Payload Serial Bus

Aim and characteristics

Telecom Payload Serial bus saves discrete TM/TC links and harness It brings improved commandability and observability of the repeater It gives efficient operability of the payload

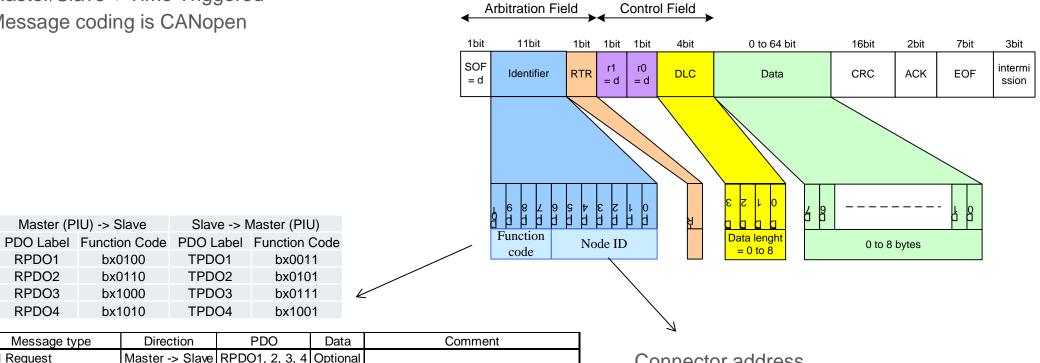


During decades Airbus used proprietary serial bus: LSSB

With drawbacks: limited data rate and number of nodes, non optimized harness (5 pairs per bus), proprietary definition leading to specific development effort on suppliers side.

CAN bus is replacing LSSB:

- Improved data rate (250kb/sec),
- # node up to 64,
- single pair per bus,
- relying on established standard.



Higher Level Protocol

In the frame of Neosat and Artes 5.2 Protocol has been agreed with TAS, TESAT and Airbus DS

Master/Slave + Time Triggered Message coding is CANopen

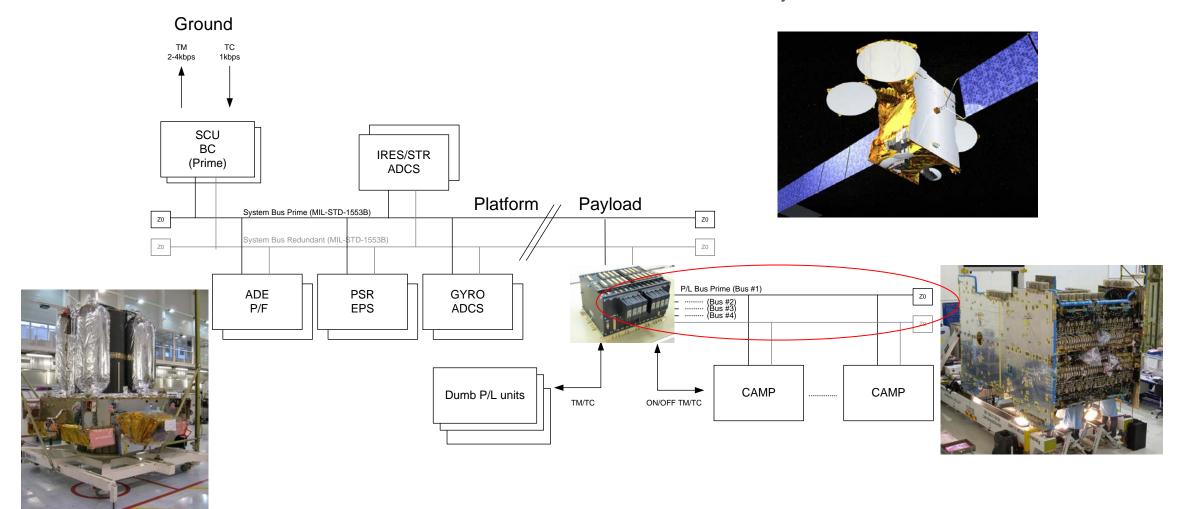
Message type	Direction	PDO	Data	Comment
TM Request	Master -> Slave	RPDO1, 2, 3, 4	Optional	
Data Transmission	Slave -> Master	TPDO1, 2, 3, 4	Yes	Shall always be initiated by TMReq
Unconfirmed Command	Master -> Slave	RPDO1, 2, 3, 4	Optional	

Connector address

Bus Management

Slave implementation:

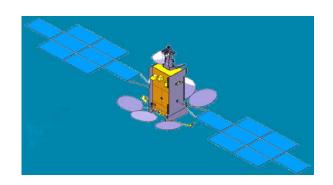
- Slave Nodes are CPU-less units
- Cost Driven ⇒ simplest implementation, simplest validation
 - No CPU added to manage CAN bus
 - Single CAN bus Controller with bus selection allowed in order to minimize Logic resources


Master implementation:

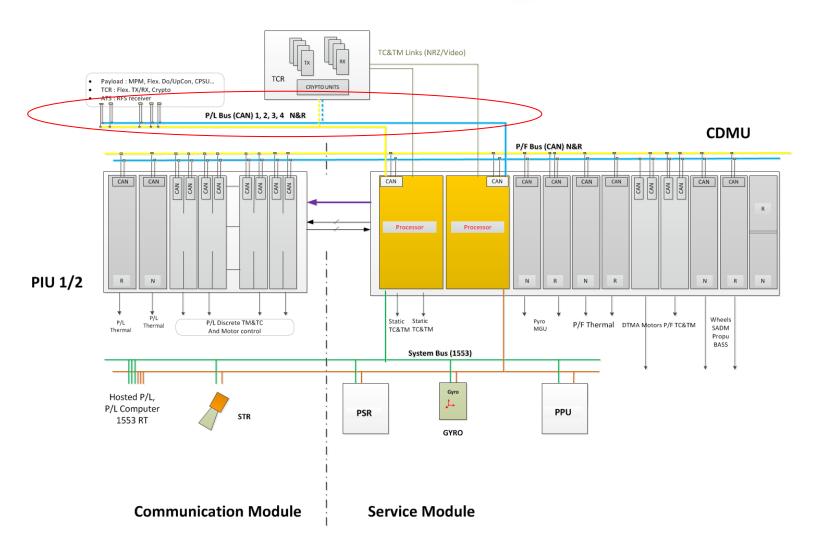
- Master CAN bus manager is also hardware implemented
- Telemetry polling via frames :
 - Cyclic
 Generic ⇒ Shrink Validation Time
 Deterministic
- Slave Nodes send messages only on Master Request

Eurostar E3000 implementation

- P/L buses managed by PIU/RTU
- Decentralized management
- Minor and major deterministic frames
- P/L Data available every 1second for CSW

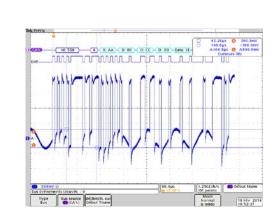


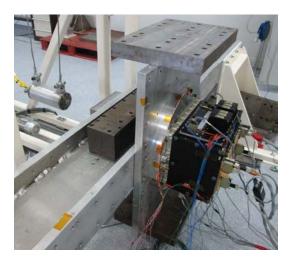
Eurostar Neo Implementation


CAN bus definition:

- Same as E3000
- 64 nodes
- 40 meters
- 250 kb/sec

P/L buses managed directly by OBC 4 buses available P/L data available every 1 sec @ OBC




Development Status

- Physical Layer validated by test and analysis
- MPIU with CAN interface has been developed and qualified
- System Validation tests done with flight representative Nodes
- CAN bus NEOSAT applicable document released (NSAT.SP.GPMPO.00000919 Issue 03)
- Several programs under development with P/L CAN bus

Development Status

- 3 E3000 + 1 GMP-T commercial programs under development
- Several units implement CAN bus interface :
 - Up/down flexible converters
 - Channels amplifiers
 - Stable Oscillators
 - Telemetry transmitters
 - Telecommand receivers
- From Several suppliers:
 - Tesat
 - Thales Alenia Space

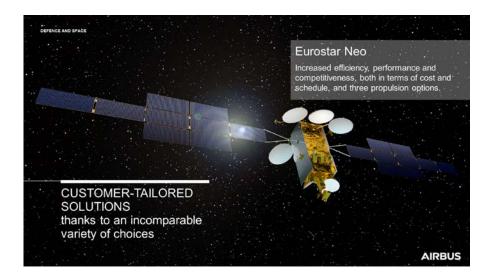
Kongsberg Norspace

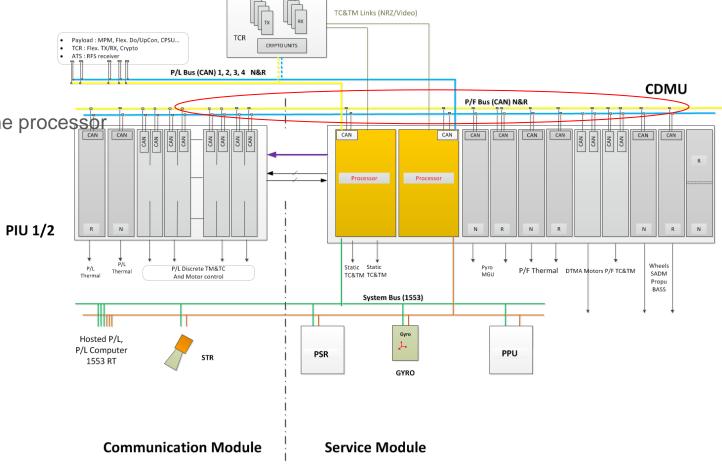
- NEC Space Technologies, Ltd.
- Airbus DS

Eurostar Neo Platform Modules Communication Bus

Platform Modules Communication Bus

Aim and characteristics


Airbus DS is developing its new Telecom platform.


DHS units use CAN bus to connect I/O modules to the processor

Data rate: 1Mb/sec

Most distant nodes : <= 15 meters

Nodes : <= 44

Platform Modules Communication Bus

Developpement Status

Physical Layer validated

System functional validation: 2017

First launch End: 2019

Other uses of CAN bus

Other use of CAN bus at Airbus Defence and Space

Sentinel 1 SAR instrument

- 500kbps
- RS 485 (DS16F95)
- 16 nodes
- Higher level protocol : proprietary (not CANopen based)

ExoMars Rover

- 1 P/F + 1 P/L bus
- 1000 kbps
- RS 485 (DS16F95)
- Higher level protocol: CANopen (HurriCANe/CCIPC)
- Platform :
 - Lengths: 7m between most distant nodes 8,5m total.
 - 10 nodes per bus
- Payload :
 - Lengths: ~ 3.8 m between most distant nodes.
- 8 nodes per bus

Developments Feedbacks

Developments Feedbacks

CAN interface Implementation is either done by multipurpose/versatile ASIC or by FPGA (54SX72, AX2000)

Implementation is almost straight forward:

- Thanks to integrated transceiver
- Bit timings always leads to questions -> AD Neosat updated
- Bus selection mechanism -> Design guide lines must be documented further
- CAN controller IP Core vs FPGA -> critical path can cross the IP!
- Attention must be paid to Internal node delay (Resynch FF, Bus selection mechanism...)

Electronic Data Sheet

- Current Neosat format not fully satisfactory
- CANopen EDS usable ?-> there is work to do here

Neosat Data bus specification (NSAT.SP.GPMPO.00000919) released at issue 03

- Well mature document but...
- further improvements need to be incorporated
- This document could be replaced by ECCS CAN section 9 if that section is updated

Contact: <u>Jean.Dalenq@airbus.com</u>

Special thanks to Paul NORRIDGE for Exomars Rover data

Thank you