
© GMV, 2017 Property of GMV

All rights reserved

UNCLASSIFIED INFORMATION

El presente documento está clasificado como "GMV-XXXX". Esta clasificación habilita a su receptor al uso de la información contenida en el documento para los fines para los que la empresa la ha facilitado o,
en su caso, a lo acordado contractualmente en relación al intercambio de información entre las partes, y ello sin perjuicio del cumplimiento de la normativa sobre propiedad intelectual y sobre protección de
datos de carácter personal.

AUTOCOGEQ
Final Presentation

09/05/2017 @ESTEC

AUTOCOGEQ

Page 209/05/2017

I
n

d
e
x

 AUTOCOGEQ Project Overview and Main Objectives

 Autocoding Methodology

 GNC Demonstrator

 AUTOCoding Wizard

 End 2 End Methodology Demonstration

 Conclusions & Lessons Learnt

Final Presentation

AUTOCOGEQ Project
Overview & Main
Objectives

AUTOCOGEQ

AUTOCOGEQ

Page 409/05/2017

AUTOCOGEQ Project Data

  September 2015 - May 2017 (~20 months)

  Manrico Fedi Casas

 Section  TEC-QQS (contribution from TEC-SAG, TEC-ECN and
TEC-SWE)

 Company 

AUTOCOGEQ Project Overview & Main Objectives

Final Presentation

AUTOCOGEQ

Page 509/05/2017

Introduction

 Consolidated approach in prototyping space AOCS/GNC SW is to follow a
model-based component approach:

 Develop a simulator in the Matlab/Simulink environment for GNC
algorithms

 The models are then autocoded (by means of automatic techniques)

 Production code generated is embedded in OBSW/OBC and validated in
real time test benches.

 Complete process of the SW development and verification shall be clearly
defined and analyzed

 Quality of the code produced from autocoding of Matlab/Simulink models shall
be analyzed according to the final use

AUTOCOGEQ Project Overview & Main Objectives

Final Presentation

AUTOCOGEQ

Page 609/05/2017

AUTOCOGEQ Main Objectives

 The AUTOCOGEQ activity has the following main objectives:

– Define a methodology that allows automatic code generation from
Matlab/Simulink models for direct integration in on-board critical flight SW

 ECSS critical software category B

– Assess the impact of model-based design and autocoding in ECSS

– Select a set of tools to support the SW development with autocoding

– Develop a Matlab tool (Wizard) to help the developer applying the autocoding
methodology defined

AUTOCOGEQ Project Overview & Main Objectives

Final Presentation

Imported Simulink
Simulator

AUTOCOGEQ

methodology
Models

Production Code

OBC

AUTOCOGEQ

Page 709/05/2017

AUTOCOGEQ Activities Overview
 4 main tasks have been defined:

– Task 1

• Define autocoding methodology (SW development and V&V)

• Perform tools evaluation

• Define modelling rules definition

• Assess autocoding impact to ECSS

– Task 2

• Selection and update of GNC simulator use case

– Task 3

• Define and implement an autocoding tool (Wizard)

– Task 4

• Demonstrate the complete end to end autocoding methodology

• GNC simulator used with support of Wizard

AUTOCOGEQ Project Overview & Main Objectives

Final Presentation

Task 1

Task 2 Task 3

Task 4

Autocoding
Methodology

AUTOCOGEQ

AUTOCOGEQ

Page 909/05/2017

SW Development & Verification Overview (1/3)
 Impact of the model-based design and use of autocoding techniques in flight SW lifecycle

 Analyzed SW lifecycle phases according to the ECSS-E40 standard such as:

– SW Specification

– SW Design

– SW Implementation

– SW Verification and Validation (V&V)

 AUTOCOGEQ activity focuses on the AOCS/GNC SW development  model-based design
in Matlab/Simulink (Functional Engineering Simulator - FES)

 AOCS/GNC SW development strategy is part of an integrated, coherent and incremental
Design, Development, Verification and Validation (DDVV) approach based on the chain:

FES  Autocoding  SIL  PIL

Autocoding Methodology

Final Presentation

AUTOCOGEQ

Page 1009/05/2017

SW Development & Verification Overview (2/3)
Autocoding Methodology

Final Presentation

 SW Specification

Software System Specification and AOCS/GNC
Control Algorithm Specification

AUTOCODING  Models supports the requirements
specification

 SW Design (Preliminary & Detailed Design)

SW algorithms, architecture and interfaces
definition

AUTOCODING  Model-based design - Modelling Rules
& Standards

 SW Implementation

FES implementation in Matlab/Simulink

AUTOCODING  Autocoding methodology & Tools

 SW V&V

SW Verification & Validation (unit, integration and
validation tests)

AUTOCODING  SIL, Requirements, Modelling and
Coding standards verification

AUTOCOGEQ

Page 1109/05/2017

SW Development & Verification Overview (3/3)
Autocoding Methodology

Final Presentation

 SIL Verification

Generated code embedded into an S-
Function block in Simulink.

 Verify correct portability of models
algorithms to code

 PIL Verification

Generated code embedded into a flight
representative OBC.

 Verify code performances (e.g.
schedulability, memory budget, worst
execution time, etc.)

AUTOCOGEQ

Page 1209/05/2017

OBSW Autocoding Generation Approach
Autocoding Methodology

Final Presentation

 OBSW generation based on
ASSERT approach

 OBSW is designed according to
system views (i.e. data view,
interface view and deployment
view)

 TASTE toolsuite is proposed to
design the complete OBSW

 Autocoding approach adopts 2
parallel branches:

– The Mathworks branch for
AOCS/GNC generation

– ASSERT/TASTE branch for
other OBSW modules generation

AUTOCOGEQ

Page 1309/05/2017

AOCS/GNC Autocoding Activities Defined by
Methodology

Autocoding Methodology

Final Presentation

AOCS/GNC
SW

AUTOCOGEQ

Page 1409/05/2017

AOCS/GNC Autocoding Workflow
Autocoding Methodology

Final Presentation

AUTOCOGEQ

Page 1509/05/2017

Modelling Rules & Guidelines
Autocoding Methodology

Final Presentation

 AOCS model-based development shall follow several rules and guidelines for allowing the
compatibility of the Simulink models with the auto-coding process.

 The guidelines for the AOCS/GNC modelling in Matlab/Simulink may be grouped in two
categories:

– Modelling Architectural and Design Rules

• Rules/guidelines that need to be followed at architectural and design level of the AOCS/GNC
subsystem

• RATIONALE: to port efficiently code to SVF and PIL verification and guarantees architectural
mapping

– Modelling Implementation Rules (coding and style)

• Rules/guidelines that need to be followed by the Simulink implementation of the AOCS/GNC
models

• RATIONALE: to prevent errors, language-specific pitfalls, non-optimised statements,
forbidden constructs, complexity restrictions and readability in the code generated

AUTOCOGEQ

Page 1609/05/2017

Autocoding Tools Evaluation (1/2)
Autocoding Methodology

Final Presentation

 3 groups of tools have been evaluated to support autocoding activities:

– Code Generation Tools

Tools used for the generation of production code from Matlab/Simulink models

– Modelling Verification Tools

Tools used for the modelling standards compliance verification (e.g. requirements, modelling rules
and coverage) on the Matlab/Simulink models

– Coding Verification Tools

Tools used for the verification of the production code generated (e.g. metrics, standards, coverage,
etc.)

AUTOCOGEQ

Page 1709/05/2017

Autocoding Tools Evaluation (2/2)
Autocoding Methodology

Final Presentation

 Autocoding tools evaluated according to the following criteria:

– Generic criteria

• Interfacing with Matlab/Simulink Environment

• Installation Procedure

• Learning Curve

• Market Price

• Documentation

• Support

– Tool Specific criteria

• Performance

– Code generation Tools: Code readability, Requirements traceability, Code architectural mapping level,
Code optimization (modules and lines), Generator configurability level (for metrics and statements)

– Modelling Verification Tools: Requirements verification, Modelling rules verification, Model Coverage,
Verification tool configurability level, Reporting verification

– Coding Verification Tools: Requirements verification, Coding rules verification, Metrics verification,
Static analysis, Coverage features, Reporting verification

AUTOCOGEQ

Page 1809/05/2017

Autocoding Tools Selection
Autocoding Methodology

Final Presentation

 The tools selected and then purchased for AUTOCOGEQ activities are:

– Code generation Tool  Embedded Coder

– Modelling Verification Tools  Simulink Verification & Validation Toolbox

– Coding Verification Tools  LDRA

AUTOCOGEQ

Page 1909/05/2017

ECSS Compliance Analysis (1/2)
Autocoding Methodology

Final Presentation

 ECSS-E40 standard has been reviewed and requirements that are relevant to autocoding methodology
has been analyzed

 ECSS-Q80 has been analysed and impact of model-based design and autocoding has been assessed

 Main conclusions from analysis:

– The definition of system requirements is supported by the models that can be considered as
detailed design of the components identified at high level architecture

– SW documentation such as Requirements Specification, and Design is generated with the support of
the modelling tool.

– SW development that includes modelling and autocoding can be iteratively and easily executed from
early till late development phases (dynamic development)

– Traceability matrices created from the model where requirements and design of the SW is
implemented

– The software observability, safety, security and other critical requirements must be included into
the model design in order to be reflected into the generated code (e.g. protection for division by zero,
logical errors

– Some ECSS verification activities cannot fully covered by methodology (e.g. testability, atomicity,
correctness, etc.)

AUTOCOGEQ

Page 2009/05/2017

ECSS Compliance Analysis (2/2)
Autocoding Methodology Overview

Final Presentation

– The models used for autocoding may contain parts that are not to be coded into the final SW

– No code timing and size budget can be assessed at modelling design level

– The use of autocoding techniques in the SW development implies to define and adopt modelling rules
and guidelines

– SW tests (unit, integration and validation) are performed at model level and they have to be
performed also at code level as well through SIL

– Certain aspects of Unit Tests are not covered by methodology (e.g. robustness, boundary, etc.)

– Documentation is requested such as unit and integration test specifications and reports that are
performed at MIL and SIL level

– The ASW DDR (Detailed Design Review) and TRR (Test Readiness Review) reviews are proposed to
be official formal ECSS SW reviews

– Some code generators (in order to simplify their architecture and generation mechanisms) may
systematically generate additional elements

– Code generators often assume access to external libraries that must also be qualified as SW
category B

GNC Demonstrator
Overview

AUTOCOGEQ

AUTOCOGEQ

Page 2209/05/2017

GNC Demonstrator Overview (1/3)
 A Simulink simulator is selected to be used as use case for autocoding methodology demonstration

 GNC demonstrator implements a real and complex GNC scenario

 No high performance simulator is required in the scope of AUTOCOGEQ  focus on methodology and
processes

 GNC demonstrator covers the last synchronization phase of a mission scenario with ENVISAT as target
(ADR):

– Large ESA-owned dead satellite: Envisat

– Satellite is tumbling

– ~8 tones of mass

– Polar sun-synchronous orbit (altitude ~772km)

GNC Demonstrator Overview

Final Presentation

Simulated part
in GNC

demonstrator

AUTOCOGEQ

Page 2309/05/2017

GNC Demonstrator Overview (2/3)
GNC Demonstrator Overview

Final Presentation

 A Matlab/Simulink simulator re-used from NGT-ATB activity (ADR simulator):

– Universe

– Ground Segment

– Space Segment Target

• ENV

• DYN

– Space Segment Chaser

• ENV

• DYN

• SEN

• ACT

• COM

• OBSW

AUTOCOGEQ

Page 2409/05/2017

GNC Demonstrator Overview (3/3)

 Only AOCS/GNC subsystem has been analysed in AUTOCOGEQ  part to be autocoded

 GNC models have been reviewed and updated to be compliant with the autocoding
methodology:

– Track requirements to models

– Compliance with modelling rules

– Identification and separation of

functionalities

GNC Demonstrator Overview

Final Presentation

GNC

OBSW

AUTOCoding Wizard
AUTOCOGEQ

AUTOCOGEQ

Page 2609/05/2017

AUTOCoding Wizard Overview
 A tool (Wizard) has been developed

to support the autocoding
activities defined by the
methodology:

– Support to models
building/updating

– Support to models verification
activities

– Support to code generation

– Support to code verification
activities

 The Wizard is implemented in
Matlab and integrates the tools
selected

 Wizard can support all SW
development phases

AUTOCoding Wizard

Final Presentation

AUTOCOGEQ

Page 2709/05/2017

Wizard Support for Import/Update Models
AUTOCoding Wizard

Final Presentation

 Import Available Simulator/Model

Import an existing Simulink model into the
Wizard

 Create Model from Template

Create a new model based on Simulink
templates provided with the Wizard

 Import Skeleton from TASTE Scripts

Create and import a Simulink skeleton from
TASTE generated scripts

 Deactivate Active Simulator

Remove the active Simulink model from the
Wizard

AUTOCOGEQ

Page 2809/05/2017

Wizard Support for Simulator Building
AUTOCoding Wizard

Final Presentation

 Open Quick Autocoding Guidelines

Open a quick HTML guideline reporting the most
important modelling rules

 Set Atomic Block Options

Set automatically a subsystem as atomic with the
specific settings defined by the methodology

 Open Simulink Library with Safe blocks

Open the Simulink library where only safe blocks
(block totally compatible with autocoding and with
AOCS/GNC models prototyping) are available

 Track Requirements to Simulink Models

Track the requirements from a database (e.g.
Word, Excel, DOORs, etc.) to the Simulink block

AUTOCOGEQ

Page 2909/05/2017

Wizard Support for Model Verification
AUTOCoding Wizard

Final Presentation

 Models Requirements Verification

Verify the links between the requirements and the
Simulink models and produce traceability information

 Modelling Rules Verification

Verify the compliance of the Simulink models with the
modelling rules defined for AUTOCOGEQ and produce
detailed reports.

 Model Coverage Verification

Enable/Disable and configure the model
coverage to be executed during the tests

– Checks have been
integrated into
Model Advisor

– New user defined
checks can be
integrated into
Wizard and available
into Model Advisor

AUTOCOGEQ

Page 3009/05/2017

Wizard Support for Code Generation
AUTOCoding Wizard

Final Presentation

 Open Embedded Coder Options

Open the Embedded Coder GUI to check the
options set to generate code

 Set Embedded Coder Options

Set the Embedded Coder with the options
defined by the autocoding methodology

 Set Model Tuneable Parameters

Set the tuneable parameters for the model to
generate code

 Generate Production Code

Generate C code from the selected subsystem

AUTOCOGEQ

Page 3109/05/2017

Wizard Support for Code Verification
AUTOCoding Wizard

Final Presentation

 Verify Code Requirements Trace

Verify the links between the requirements and the code
generated

 Open LDRA

Locate the LDRA installation and open the LDRA tool

 Verify Code Standards

Verify the compliance of the generated code with
selected standard via LDRA and produce detailed
reports

 Verify Code Coverage

Instrument the generated code to produce coverage
data from a test to be analyzed in the LDRA
environment

 Add Unit Tests in LDRA

Open the LDRA to manage the creation of additional
unit tests to increase code coverage

End 2 End
Methodology
Demonstration

AUTOCOGEQ

AUTOCOGEQ

Page 3309/05/2017

E2E Methodology Demonstration
 Demonstration of the complete End to End autocoding chain

 Wizard has been used to support the demonstration

 GNC demonstrator has been used as use case  Code generation for GNC subsystem

 Following verifications have been performed:

– Requirements verification

– Modelling Verification

– Code Generation and Analysis

– Code Verification

 Wizard provided HTML reports for all verifications

End 2 End Methodology Demonstration

Final Presentation

AUTOCOGEQ

Page 3409/05/2017

Requirements verification
 Requirements verification is supported by the Wizard

 The verification of the requirements trace is performed in two phases:

1. Verify the consistency of the requirements

Check if the requirements links associated to the AOCS/GNC models are consistent (i.e.
requirements document exists, correct links location inside the document, existing
requirement ID, etc.)

2. Verify the requirements trace

Generate the requirements traceability report to check if all the requirements have been
linked to the GNC models.

 HTML reports are generated for both verifications by the Wizard

End 2 End Methodology Demonstration

Final Presentation

AUTOCOGEQ

Page 3509/05/2017

Modelling Verification
 Two verifications has been performed at model level by the Wizard:

1. Modelling Rules Verification

The Wizard implements checks to automatically verify the rules defined the
methodology

2. 100% Model Coverage

The wizard is used to set the coverage and reference tests are run to assess the
percentage

A strategy has been defined for additional tests to reach 100%:

• Assess coverage of library models by specific unit tests

• Add tests to execute models not covered and produce cumulative coverage data

• Justify not-covered subsystem

 HTML reports are generated for the verifications

End 2 End Methodology Demonstration

Final Presentation

AUTOCOGEQ

Page 3609/05/2017

Code Generation and Analysis

 Production C code has been generated via Wizard

 Analysis of HTML code generation report has been performed to assess:

– list of C files generated by the tool

– mapping of the model subsystems to the generated code

– C code interfaces (i.e. entry points and variables)

– metrics of the generated code (i.e. cyclomatic complexity, variables size, etc.)

End 2 End Methodology Demonstration

Final Presentation

AUTOCOGEQ

Page 3709/05/2017

Code Verification
 Two verifications has been performed at code level by the Wizard:

1. Coding Standard Verification

The Wizard verifies the MISRA-C 2012 standard for the code generated. Violations have been
found:

– Some can be solved by new implementation/settings

– Some are related to automatic code generation not controlled by user

2. 100% Code Coverage

The wizard is used to verify 100% of code coverage:

– Reference tests have been run in SIL (re-used tests from model coverage)

– Add unit tests for coverage of specific C files

– Justify not-covered code

 HTML reports are generated for the verifications

End 2 End Methodology Demonstration

Final Presentation

Conclusions &
Lessons Learnt

AUTOCOGEQ

AUTOCOGEQ

Page 3909/05/2017

Conclusions
 A detailed autocoding methodology has been defined to support development process

of flight code (criticality of category B defined by ECSS standards) from Matlab/Simulink
models

 A set of modelling rules and guidelines has been established by the methodology

 Commercial tools to support the autocoding methodology have been evaluated, selected
and purchased in AUTOCOGEQ (integrated in the Wizard)

 A Wizard tool has been developed under Matlab to support the SW development phases
 can be expanded and customized with integration of new rules

 The autocoding methodology proposed has been demonstrated using the Wizard on a
real GNC simulator case

 The Wizard and methodology allows quick verification & recursive updates during all SW
lifecycle

 Some manual activity still need to be performed for qualifying the generated code as
category B as outcome of the analysis of the impact of autocoding on ECSS standards

Conclusions & Lessons Learnt

Final Presentation

AUTOCOGEQ

Page 4009/05/2017

Lessons Learnt
 Flight SW developed by models-based design and autocoding shall consider a well defined

methodology from the beginning of lifecycle

 Re-use of models not implemented for generating flight code leads to a big adaptation
effort  starting the SW development from scratch may be the best solution

 Tailoring of the code generation settings, modelling rules and code standards (e.g.
MISRA-C) is needed according to projects needs

 Tools and automatic generation cannot guarantee the qualification of generated code
as category B  tools support and complement the ECSS processes

 Still additional manual activities have to be performed to cover the complete ECSS
processes for flight code qualification

 Wizard allows quick check of the rules and let the SW development process to be more
flexible and recursive during all the phases but does not make miracles for generation
of flight code

Conclusions & Lessons Learnt

Final Presentation

w
w

w
.g

m
v
.c

o
m

THANK YOUTHANK YOU
Francesco Pace

fpace@gmv.com

https://www.facebook.com/infoGMV
https://www.facebook.com/infoGMV
https://twitter.com/infoGMV
https://twitter.com/infoGMV
https://www.linkedin.com/company/gmv
https://www.linkedin.com/company/gmv
http://www.gmv.com/en/RSS
http://www.gmv.com/en/RSS
https://twitter.com/infoGMV
https://twitter.com/infoGMV
https://www.youtube.com/user/infoGMV
https://www.youtube.com/user/infoGMV
http://www.gmv.com/blog_gmv/language/en/
http://www.gmv.com/blog_gmv/language/en/

