
FT-Unshades
maintenance
TEC-ED & TEC-SW
Final presentation days, 9th May 2017

Contents

● Introduction
● Usability improvements
● Bug fixes
● Extension of injection coverage
● Analog FTU integration
● Beam experience
● Conclusions and future work

Contents

● Introduction
● Usability improvements
● Bug fixes
● Extension of injection coverage
● Analog FTU integration
● Beam experience
● Conclusions and future work

Introduction

FT-Unshades2:
FPGA-based fault
injection emulator
(SEUs).

Also an analog
utility, AFTU
(SETs).

Inputs Comparison

Design

Design

Introduction

FT-Unshades2: FPGA-based fault injection
emulator. Also an analog utility (AFTU).

Objectives of the maintenance contract:
● Improve usability & documentation
● Bug fixes
● Continue development & improvements

Contents

● Introduction
● Usability improvements
● Bug fixes
● Extension of injection coverage
● Analog FTU integration
● Beam experience
● Conclusions and future work

Usability improvements

● Improvements on the User Friendly Interface
(UFF)
○ Ease of use, waveform presentation

● A report on the usability of the Analog FTU
tool has been written and delivered

● TNT user manual and scripting guide
● UFF user manual

New user guides

Shell Graphical
interface

Contents

● Introduction
● Usability improvements
● Bug fixes
● Extension of injection coverage
● Analog FTU integration
● Beam experience
● Conclusions and future work

Issues solved

More than 100 issues solved:

● HW / SW stability
● Bug fixes
● New features

Contents

● Introduction
● Usability improvements
● Bug fixes
● Extension of injection coverage
● Analog FTU integration
● Beam experience
● Conclusions and future work

Extension of Injection Coverage

Previously, only injection on Flip-flops was
supported:
● High demand for injection in Block RAMs
● -> Study SEUs in Microprocessor memories

Injection in Block RAMs now supported

Extension of Injection Coverage

Çç

Design with embedded BRAM

Extension of Injection Coverage

Read from
BRAM
(TNT)

Extension of Injection Coverage

Write to
BRAM
(TNT)

Extension of Injection Coverage

Read from BRAM (UFF)

Extension of Injection Coverage

Write to BRAM (UFF)

Contents

● Introduction
● Usability improvements
● Bug fixes
● Extension of injection coverage
● Analog FTU integration
● Beam experience
● Conclusions and future work

Analog FT-Unshades

What does it do?
● Analyzes the effects of radiation on analog circuits

How does it do it?
● Instrument a circuit
● Create injectors
● Create watches
● Build the actual simulation

Workflow

netlist

sources

nodes

injectors

watches

simulation
script

instrumented
netlist

Instrumentation

● Take the design of a circuit and add
instruments to alter its behavior.

● For every technology, a small database of
instrumentable elements is used.

● It generates three files:
○ an instrumented version of the original netlist;
○ a list of sources where faults may be injected;
○ a list of nodes that can be watched during the

simulation.

Injectors

● Determine where and when faults are
injected during the simulation.

● Candidates are in the source list generated
during the instrumentation step.

● Each element is injected at impacts times
and with charges provided by the user.

Injectors

Watches

● Determine which elements are analyzed during
the simulation.
○ Node signals or composed expressions

● Candidates are in the node list generated during
the instrumentation step.

● A heuristic is used, simulation-wide, to
determine how the circuit differs from its correct
behaviour, defining the test campaign.

Watches

The Simulation

The final output is:
● A modified netlist on which the simulation runs;
● An Ocean-based script that evaluates the

circuit’s radiation performance.
With both, an SET sensitivity analysis can be
performed in the Spectre-based simulator.
● .csv output file

Analog FTU maintenance

Work from previous version of AFTU:
● Implementation of a GUI in UFF 3.7,

integrated with digital fault injection tool.
● Adaptation to new technologies (IHP 130

nm, TSMC 65nm, UMC 65nm)
● Tool development and usability tests with

analysis of real circuits (ours and 3rd-party).

Analog FTU maintenance
Potential new features related to:
● Test campaign and fault injection upgrades

○ Increase user-friendliness (file formats, GUI options)
○ Allow hierarchical & random injections

● Models and heuristics improvement
○ Computer efficiency, additional heuristics
○ Additional total dose studies (TID + SET)

● Study of interoperability with FTU (digital)
● Multiple impacts emulation

Contents

● Introduction
● Usability improvements
● Bug fixes
● Extension of injection coverage
● Analog FTU integration
● Beam experience
● Conclusions and future work

Beam experience

F.I. and radiation tests tipically differ because:
● Different FPGA device
● Different implementation pin constraints
● Different P&R solutions
● Different time windows
● [...]
What if we use exactly the same hardware with
exactly the same bitstream?

Beam experience

● Bridging the gap between F.I. & radiation
○ F.I. does not pretend to substitute radiation testing

● It is important for us to characterize FTU2
○ Determine which conditions are needed to get the

maximum accuracy with respect to radiation testing,
and which accuracy is that.

○ Implemented full FPGA readback capability -> get
number of upsets in FPGA

● First time to test FTU2 with actual radiation.

Beam experience

Los Alamos Neutron Science CEnter (LANSCE)
● New Mexico, November 2016
● Weapons Neutron Research facility (WNR)

○ Neutron beam: Tungsten spallation source
○ The shape of the neutron spectrum is very similar to the produced

in the atmosphere by cosmic rays (scaled)
○ The DUT was placed at 25.8 m from the neutron source
○ We obtained a spot with 40 mm of diameter
○ A neutron flux of 2.0·105 n/(s·cm2), above 10 MeV, has been

obtained
○ The total fluence per experiment was 6.9·108 n/cm2

Beam experience

Beam experience

Beam experience

We developed a running script for the
experiment.
● FTU2 allows scripting
● Disable injecting of faults (SEU will occur naturally)
● Control the platform remotely with a portable computer
● Control the power source with a USB controlled power

strip connected to the computer

Beam experience

The Test Loop
● Shut the platform down and then power it on again

every hour
○ Assure no uncorrectable SEU in the FPGA can produce a

long-lasting Single Event Functional Interrupts (SEFI)
● Each hour, it has executed 750 ‘runs’

○ It made a readback after every ten runs
○ After each readback, the target FPGA was reconfigured and

the design was reset

Beam experience

Results: LANSCE
● Discrepancies between each readback and the golden

readback
○ With output errors

■ Generated an average of 7 output errors
○ Without output errors

■ Calculated SEU/s rate
● Selected lots (1 lot = 10 runs) without output errors

○ 13 SEU/lot or 1.3 SEU/run
○ Duration of 750 runs = 3471 seconds
○ 46.28 s/lot or 0.28 SEU/s

Beam experience

FTU2
● Objective:

○ Reproduce the radiation experiment using FTU2 (same
hardware, change beam for fault injection)

● Issue:
○ Not all runs under the beam involved an actual SEU on the

essential bits of the target FPGA
○ FTU2 can only inject safely on essential bits. Addressable

configuration locations not marked as essential bits are not
guaranteed to physically exist on the device

Beam experience

FTU2
● Action: We had to scale the SEU/run rate that we were

going to inject into the essential bits of our design
○ FX70T FPGA model - ebd (essential bit Data) file: 18936096

essential bits
○ Our design consists of 2715926 essential bits

■ 3% belong to user bits
■ 97% belong to configuration bits

○ There is only a 14% probability that an SEU will occur over the
essential bits of our design

Beam experience

Results: FTU2
We obtained an average of 6 output errors
We obtained a lower SEU/lot rate than in the radiation test
These results can be improved in two ways:
1. We could modify our platform to inject randomly over all the

configuration bits of the FPGA
2. We could mask the essential bits of the radiation test readbacks

and then only select those discrepancies that affect essential bits of
the design

Conclusions (Beam experience)
● A new experience for a beam-able fault injection platform. It

seeks to analyze the similarity of the results of the injection of
faults with reality

● We need to perform more experiments to apply statistical
data and increase confidence in the results

● We have discovered new ideas on how to improve our fault
injection platform to recreate the radiation test

● The experience makes us reinforce the idea of being able to
use FTU2 as an analysis tool prior to performing a radiation
test

Contents

● Introduction
● Usability improvements
● Bug fixes
● Extension of injection coverage
● Analog FTU integration
● Beam experience
● Conclusions and future work

Conclusions
● Improvements and bug fixes

○ Keep the tools updated, continue improving & adding functionality,
support users

● Extension of injection coverage and scrubbing emulation
○ Allows F.I. testing of new circuits + schemas (microprocessors, partial

reconfiguration)

● AFTU easier to use & integrated in the same graphical interface
○ Also supports more technologies

● Beam-able F.I. platform: ease reproducibility of radiation tests
○ Towards characterization of how similar F.I. is to radiation and what

conditions are needed

Future work
● Speed up injection in Block RAMs
● Extend injection to distributed memories
● Full PCI express protocol for PC interoperability
● FTU-BRAVE (w/ NanoXplore NG-Medium)
● Daughter boards with external memory
● Improve statistics on fault injection vs radiation

comparison (need more radiation data)

Q & A

Enquiries about usage / collaborations /
research periods @unisevilla:

Hipólito Guzmán Miranda: hguzman@us.es

Extra slides

Scrubbing emulation
FTU2 allows working with partial bitstreams.
● Partial reconfiguration is done preserving

user flip-flop contents
Can be used to:
● Measure effectiveness of adaptive

reconfiguration strategies
● Test scrubbing schemas

Working with partial bitstreams

Full
bitstream

Partial
bitstreams

Working with partial bitstreams

Configure with full bitstream

Working with partial bitstreams

Design works as expected
(counter incrementing)

Working with partial bitstreams

Partial reconfiguration

Working with partial bitstreams

Counter is now decrementing instead
Design state is kept between reconfigurations

