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Motivation 

More and more functionality is provided by software 
components in every new generation of CRTES 
– Increase of the required computational power 
– High-performance hardware (HW) features (e.g. caches) used 

 
Shared last-level cache  (LLC) 
– Improves average performance  deployed in high-performance 

processors (e.g. ARM Cortex A9, A15, Freescale P4080,…) 
– Its use in CRTES is not straight forward 

• Interferences in the LLC makes task WCET estimates history dependent 
• WCET estimate for a task depends on its corunners  affects time 

composability 
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The issue: Inter-task interferences 

Two Solutions to handle inter-task interferences 
 
Combined multi-task WCET analysis 
– Tighter WCET estimates 
– Affects time composability: if any task is changed  redo the analysis 

for all tasks 

 
The current solution to enable LLC in multicore real-time 
processors is based on cache partitioning (SW and HW) 
– Prevents inter-task interferences 
– Impacts data sharing among tasks and task scheduling 
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Example: software cache partitioning 

Let assume tasks A and B are mapped on the same cache 
sets, and task C is mapped on a different sets 
– (a) The scheduler has to prevent tasks A and B to run simultaneously 
– (b) It is non-obvious how to manage read-write shared data among 

tasks A and C 
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Setting the Scene 



Measurement-Based Timing Analysis 

Analysis phase   
– Collect measurements to derive a WCET estimate that holds valid 

during system operation 
 

Operation phase  
– Actual use of the system (under assumption it stays within its 

performance profile) 
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Motivation 

Sources of Jitter (SoJ) challenge WCET derivation 
– Any platform element in the platform that cause execution                                                                                                                                                        

time of a program to vary is a SoJ 

Measurements have to properly capture the impact SoJ have 
on execution time to achieve a reliable bound 
– Low-level sources of jitter scape the user controllability 

• What is the placement objects in memory that leads to the WCET? 
–  Systems are complex to understand, the user can only follow what 

happens at a high level 

10 



Measurement-Based Probabilistic Timing Analysis 

Control SoJ so their worst operation-time behaviour is 
captured at analysis time 
– Deterministic Upperbound  make them work on their worst latency 

• A simple run suffices to capture its behaviour 
– Probabilistic Upperbounding  randomize them 

• A probabilistic argument  is required on the number of runs needed 
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Measurement-based Probabilistic Timing Analysis 

Measurements capture the impact of SoJ 
– The user does not need to control low-level SoJ 

• Upperbounded 
• Randomized 

Probabilistic WCET (pWCET) 
– Quantification of the possibility of exceeding the estimated bound 

How many runs are required? 
– It depends on the platform  
– Sufficient to capture all SoJ 
– Extreme Value Theory (EVT) 

• To achieve arbitrarily low pWCET 
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Example: The Cache 
Memory mapping  cache layouts   execution time 

 
 
 

 
Deterministic system 
– How does the user get confident that experiments capture bad (worst) 

mappings? 
– Memory mapping varies across runs, but not in a random manner 

Randomized systems 
– Make N runs  
– We can derive  

• the probability of the observed mappings @ operation 
• the probability of unobserved mappings 
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Time-randomised caches 

Random Replacement 
– Evict on miss policy, randomly selects a victim line from the target set to be 

evicted  

Random Placement  across runs, so executions times are 
probabilistic 
 
 
 
Random placement and replacement caches break 
dependence of performance on actual addresses 
– Does not matter where (which cache set) data are located 
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A Time-randomized Processor for the Space Domain 

We made a processor resembling the  
NGMP compatible with probabilistic timing analysis 

Changes were required at: 
– Floating point unit  Fixed latency FPU operations 
– L1 Cache  Random placement and replacement  
– L2 Cache  Random placemenent and 
Replacement + partitioning 
– Random arbitration in shared resources Core 
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A Time-randomized Processor for the Space Domain 

Measurements capture the effect of the existing SoJ 
– Randomization and upperbounding 

Probabilistic WCET can be derived 
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Can we get more from the probabilistic 
approach? 



L2 Cache Inter-task Interference 

Given two tasks accessing a shared cache, features that 
shape their interference  are the following: 
 
Time deterministic cache (Modulo and LRU) 

Memory mapping of tasks  it determines the sets accessed 
 Access frequencies of each tasks  affects LRU state 
Relative order of accesses   affects LRU state 

 
Time Randomised cache: 

Memory mapping of tasks  
Miss frequencies of tasks (hits do not affect cache state) 
Relative order of accesses 
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Probabilistically upper-bounding interference 

Idea: In Time-Randomised caches limiting how often a task 
can evict lines from LLC is enough to derive trustworthy and 
tight WCET estimates 
 
Limiting LLC eviction frequency as a way to control intertask 
interferences in LLC 
 
No need to physically partition the cache 
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The implementation 



Eviction Frequency Limitation (EFL) 
Each task running in the multicore is allowed to generate a new eviction in 
the LLC as long as at least 𝑀𝑀𝑀 cycles elapsed since its last eviction 
 
 
 
 
 
 
 
Controlling the maximum eviction frequency is preserved we can bound 
(and measure) the maximum interference due to sharing the L2 
EFL requires including some extra features in the time-randomized 
processor we developed within PROXIMA  
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EFL Required modifications 

Stall Module 
– A mechanism to ensure a given core is not evicting data until at least 

MID cycles have elapsed 
– Requires some counters to control eviction frequency is preserved for 

all cores 
– Requires relatively simple modifications in the L2 

• A new port is provided to allow signalling a give core is not entitled to 
perform a new eviction 

– An access that hits in the L2 can is processed normally 
• Sends an SPLIT command to the master (core) that cannot resume the 

execution until its counter reaches zero 
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Obtaining Time-composable WCET with EFL 
EFL allows to derive composable WCET estimates running tasks in 
isolation  do not assume any miss rate 
 
Analysis mode 
– Hardware 

• An Eviction module signals at the maximum rate (every MID cycles) a new eviction 
• When the L2 receive the evict signal evict randomly a cache line (the set and way 

are random and provided by random bits available in the randomized processor) 
– Software 

• Microbenchmarks causing the worst potential interference are run with the task 
under analysis 
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Results 



Experimental setup 

Processor configuration 
– 4-core LEON3 incorporating the NGMP L2 module (128KB) 
– Synthetized on the ML510 board 

Software micro-benchmarks: 
– l2h: load operations missing in DL1 and hitting in L2.  
– l2m: load operations missing in DL1 and in L2. 
– s2h:  As l2h but using store operations to access the L2. 
– s2m: As l2m but using store operations to access the L2. 
– l2-64kb: benchmarks that miss in DL1 and hit in L2 with higher footprint 

than l2h.  
– l2-96kb: IDEM, but its footprint is 96KB. 

EFL is configured using different MID values 
– We evaluate the impact of EFL on the task under analys (TUA) 
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L2h vs 3 copies of (l2h,l2ms2h,s2m) 
l2h vs l2h: l2h is quite stable under different MIDs.  
– When MID reaches the hundreds we observe  
how l2h increases its execution time.  

• The overhead of the contenders in cache is low, so  
increasing MID is not providing any benefit 
• For high MID few misses affect TUA performance  
 

l2h vs l2m:  l2h is quite stable under different MIDs.  
– For MID>31 we observe how l2h increases its  
performance (reduction in execution time).  

• l2m evict some of l2h data from L2 when 
 MID is configured low, 
• but being able to hit more consistently when l2m 
 is slowed down by EFL.  
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L2h vs 3 copies of (l2h,l2ms2h,s2m) 
l2h vs s2h:  Performance of l2h is unaffected  

– Both benchmarks are able to hit the majority of  
the time in L2 
 
 
 
 

l2h vs s2m: makes a wave form 
– EFL has little impact for low MID but in general makes  
the TUA to run slightly slower  not preventing s2m  
to evict data and extra misses are penalized by EFL  
– MID=31  reduces TUA  evictions and improves its  
performance since high MID values do not affect it much  
– Until high MID values are reached performance can be 
 reduced (MID=31) or increased (MID=63)  
– Very high MID values improve the performance of the 
 TUA since they prevent data to be evicted.  
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L2m vs 3 copies of (l2h,l2ms2h,s2m) 
l2m vs l2h: l2m causes several L2 cache evictions. 

– Increasing values of MID cause the TUA to run slower. 

l2m vs l2m: The TUA behaves almost identically as in 
the l2m vs l2h experiment,  
l2m vs s2h: Similar results to l2m vs l2h, as the 
contender tasks are not slowed down by EFL 
l2m vs s2m:  

– The TUA is slowed down by the contenders for low MIDs.  
– MID=15 where l2m is able to improve its execution time, as s2m 

contenders get stopped by EFL.  
– For big values of MID, l2m performs worse, as EFL noticeably 

stops the TUA too. 
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Quality of Service (QoS) results 
EFL can improve the performance of 
the TUA but penalizes overall 
system performance 
– x-axis:   

• performance  task under anal. 
• Shown in percentage 
• 100% means as much 

performance as the TUA gets 
when it runs in isolation. 

– The y-axis  
• IPC throughput, that is, the 

addition of the Instructions Per 
Cycle (IPC) executed by 
contender tasks 
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QoS results 
Results 
– Top-right corner  

• better since they achieve higher 
aperf and gperf.  

– bottom-left corner  
• worse since the result in lower 

aperf and gperf.  
– top-left bottom-right diagonal  

• cannot be categorized as better 
or worse  

• they obtain lower gperf and 
higher aperf or vice-versa. 
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Some examples 
We need to understand how our application will behave to asses the 
suitability of the EFL mechanism  

– For applications with high average L2 hit rates EFL provides good results 
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MID=64 improves both TUA 
guarantees and multicore 
throughput  

High MID values increase 
TUA guarantees but degrade 
multicore throughput 

Partitioning 

EFL MID=64 

Partitioning 
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Conclusions  

In this activity we have evaluated the suitability of the EFL 
mechanism in a NGMP-like processor 
EFL reduces the problems of cache partitioning in terms of 
data sharing and task mapping:  
– tasks may have shared pages or libraries whose actual sharing is 

complicated since cache partitioning does not allow tasks to share data 
on-chip. 

Our results show that EFL is a very effective technique to 
achieve good performance guarantees in a non-partitioned L2 
cache setup at a reasonable hardware cost 
– Only few counters and minor modifications in the L2 were required 
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