
www.bsc.es

Assessment of the Implementation of the
EFL Time-Randomised Cache

in the NGMP Architecture

Francisco J. Cazorla (TC),
Carles Hernandez,

Jaume Abella,
Leonidas Kosmidis

Marcel Verhoef (TO)

Software Systems Division & Data
Systems Division Final

Presentation Days
09/05/2017

Jan Andersson,
Nils-Johan Wessman

Motivation

More and more functionality is provided by software
components in every new generation of CRTES
– Increase of the required computational power
– High-performance hardware (HW) features (e.g. caches) used

Shared last-level cache (LLC)
– Improves average performance  deployed in high-performance

processors (e.g. ARM Cortex A9, A15, Freescale P4080,…)
– Its use in CRTES is not straight forward

• Interferences in the LLC makes task WCET estimates history dependent
• WCET estimate for a task depends on its corunners  affects time

composability

2

Agenda

Motivation
– Pros and Cons of LLC partitioning

Setting the Scene
– Probabilistic Timing Analysis

Idea
– Probabilistic Control of cache interference

Implementation
– From a simulator to RTL

Results
– Performance
– Quality of Service

Conclusions

3

Core

Bus

Memory controller

Main Memory

Core Core Core

Shared Cache

www.bsc.es

Motivation

Motivation

More and more functionality is provided by software
components in every new generation of CRTES
– Increase of the required computational power
– High-performance hardware (HW) features (e.g. caches) used

Shared last-level cache (LLC)
– Improves average performance  deployed in high-performance

processors (e.g. ARM Cortex A9, A15, Freescale P4080,…)
– Its use in CRTES is not straight forward

• Interferences in the LLC makes task WCET estimates history dependent
• WCET estimate for a task depends on its corunners  affects time

composability

5

The issue: Inter-task interferences

Two Solutions to handle inter-task interferences

Combined multi-task WCET analysis
– Tighter WCET estimates
– Affects time composability: if any task is changed  redo the analysis

for all tasks

The current solution to enable LLC in multicore real-time
processors is based on cache partitioning (SW and HW)
– Prevents inter-task interferences
– Impacts data sharing among tasks and task scheduling

6

Example: software cache partitioning

Let assume tasks A and B are mapped on the same cache
sets, and task C is mapped on a different sets
– (a) The scheduler has to prevent tasks A and B to run simultaneously
– (b) It is non-obvious how to manage read-write shared data among

tasks A and C

7

www.bsc.es

Setting the Scene

Measurement-Based Timing Analysis

Analysis phase
– Collect measurements to derive a WCET estimate that holds valid

during system operation

Operation phase
– Actual use of the system (under assumption it stays within its

performance profile)

9

Operation

Analysis

obs1
obs2

obsN
…

Prediction bound

Must hold during operation

Motivation

Sources of Jitter (SoJ) challenge WCET derivation
– Any platform element in the platform that cause execution

time of a program to vary is a SoJ

Measurements have to properly capture the impact SoJ have
on execution time to achieve a reliable bound
– Low-level sources of jitter scape the user controllability

• What is the placement objects in memory that leads to the WCET?
– Systems are complex to understand, the user can only follow what

happens at a high level

10

Measurement-Based Probabilistic Timing Analysis

Control SoJ so their worst operation-time behaviour is
captured at analysis time
– Deterministic Upperbound  make them work on their worst latency

• A simple run suffices to capture its behaviour
– Probabilistic Upperbounding  randomize them

• A probabilistic argument is required on the number of runs needed

11

Measurement-based Probabilistic Timing Analysis

Measurements capture the impact of SoJ
– The user does not need to control low-level SoJ

• Upperbounded
• Randomized

Probabilistic WCET (pWCET)
– Quantification of the possibility of exceeding the estimated bound

How many runs are required?
– It depends on the platform
– Sufficient to capture all SoJ
– Extreme Value Theory (EVT)

• To achieve arbitrarily low pWCET

12

MBPTA

EVT Rando-
mizatio

n

Example: The Cache
Memory mapping  cache layouts  execution time

Deterministic system
– How does the user get confident that experiments capture bad (worst)

mappings?
– Memory mapping varies across runs, but not in a random manner

Randomized systems
– Make N runs
– We can derive

• the probability of the observed mappings @ operation
• the probability of unobserved mappings

13

S
et

s

A

B

C

S
et

s

A B C

S
et

s

A
B C …

Time-randomised caches

Random Replacement
– Evict on miss policy, randomly selects a victim line from the target set to be

evicted

Random Placement across runs, so executions times are
probabilistic

Random placement and replacement caches break
dependence of performance on actual addresses
– Does not matter where (which cache set) data are located

14

Address

Random index identifier
(changes across executions)

Parametric
hash

function

15

A Time-randomized Processor for the Space Domain

We made a processor resembling the
NGMP compatible with probabilistic timing analysis

Changes were required at:
– Floating point unit  Fixed latency FPU operations
– L1 Cache  Random placement and replacement
– L2 Cache  Random placemenent and
Replacement + partitioning
– Random arbitration in shared resources Core

Bus

Memory controller

Main Memory

IL1

F

DL1 ITLB DTLB

D E WB

Core

Core Core Core

Shared Cache

16

A Time-randomized Processor for the Space Domain

Measurements capture the effect of the existing SoJ
– Randomization and upperbounding

Probabilistic WCET can be derived

+3.3%
vs

COTS

COTS
(modulo, LRU,

FPU not
upperbounded)

Execution time (cycles)

www.bsc.es

Can we get more from the probabilistic
approach?

L2 Cache Inter-task Interference

Given two tasks accessing a shared cache, features that
shape their interference are the following:

Time deterministic cache (Modulo and LRU)

Memory mapping of tasks  it determines the sets accessed
 Access frequencies of each tasks  affects LRU state
Relative order of accesses  affects LRU state

Time Randomised cache:

Memory mapping of tasks
Miss frequencies of tasks (hits do not affect cache state)
Relative order of accesses

18

Probabilistically upper-bounding interference

Idea: In Time-Randomised caches limiting how often a task
can evict lines from LLC is enough to derive trustworthy and
tight WCET estimates

Limiting LLC eviction frequency as a way to control intertask
interferences in LLC

No need to physically partition the cache

19

www.bsc.es

The implementation

Eviction Frequency Limitation (EFL)
Each task running in the multicore is allowed to generate a new eviction in
the LLC as long as at least 𝑀𝑀𝑀 cycles elapsed since its last eviction

Controlling the maximum eviction frequency is preserved we can bound
(and measure) the maximum interference due to sharing the L2
EFL requires including some extra features in the time-randomized
processor we developed within PROXIMA

21

EFL Required modifications

Stall Module
– A mechanism to ensure a given core is not evicting data until at least

MID cycles have elapsed
– Requires some counters to control eviction frequency is preserved for

all cores
– Requires relatively simple modifications in the L2

• A new port is provided to allow signalling a give core is not entitled to
perform a new eviction

– An access that hits in the L2 can is processed normally
• Sends an SPLIT command to the master (core) that cannot resume the

execution until its counter reaches zero

22

Obtaining Time-composable WCET with EFL
EFL allows to derive composable WCET estimates running tasks in
isolation  do not assume any miss rate

Analysis mode
– Hardware

• An Eviction module signals at the maximum rate (every MID cycles) a new eviction
• When the L2 receive the evict signal evict randomly a cache line (the set and way

are random and provided by random bits available in the randomized processor)
– Software

• Microbenchmarks causing the worst potential interference are run with the task
under analysis

23

www.bsc.es

Results

Experimental setup

Processor configuration
– 4-core LEON3 incorporating the NGMP L2 module (128KB)
– Synthetized on the ML510 board

Software micro-benchmarks:
– l2h: load operations missing in DL1 and hitting in L2.
– l2m: load operations missing in DL1 and in L2.
– s2h: As l2h but using store operations to access the L2.
– s2m: As l2m but using store operations to access the L2.
– l2-64kb: benchmarks that miss in DL1 and hit in L2 with higher footprint

than l2h.
– l2-96kb: IDEM, but its footprint is 96KB.

EFL is configured using different MID values
– We evaluate the impact of EFL on the task under analys (TUA)

25

L2h vs 3 copies of (l2h,l2ms2h,s2m)
l2h vs l2h: l2h is quite stable under different MIDs.
– When MID reaches the hundreds we observe
how l2h increases its execution time.

• The overhead of the contenders in cache is low, so
increasing MID is not providing any benefit
• For high MID few misses affect TUA performance

l2h vs l2m: l2h is quite stable under different MIDs.
– For MID>31 we observe how l2h increases its
performance (reduction in execution time).

• l2m evict some of l2h data from L2 when
 MID is configured low,
• but being able to hit more consistently when l2m
 is slowed down by EFL.

26

L2h vs 3 copies of (l2h,l2ms2h,s2m)
l2h vs s2h: Performance of l2h is unaffected

– Both benchmarks are able to hit the majority of
the time in L2

l2h vs s2m: makes a wave form
– EFL has little impact for low MID but in general makes
the TUA to run slightly slower  not preventing s2m
to evict data and extra misses are penalized by EFL
– MID=31  reduces TUA evictions and improves its
performance since high MID values do not affect it much
– Until high MID values are reached performance can be
 reduced (MID=31) or increased (MID=63)
– Very high MID values improve the performance of the
 TUA since they prevent data to be evicted.

27

L2m vs 3 copies of (l2h,l2ms2h,s2m)
l2m vs l2h: l2m causes several L2 cache evictions.

– Increasing values of MID cause the TUA to run slower.

l2m vs l2m: The TUA behaves almost identically as in
the l2m vs l2h experiment,
l2m vs s2h: Similar results to l2m vs l2h, as the
contender tasks are not slowed down by EFL
l2m vs s2m:

– The TUA is slowed down by the contenders for low MIDs.
– MID=15 where l2m is able to improve its execution time, as s2m

contenders get stopped by EFL.
– For big values of MID, l2m performs worse, as EFL noticeably

stops the TUA too.

28

Quality of Service (QoS) results
EFL can improve the performance of
the TUA but penalizes overall
system performance
– x-axis:

• performance task under anal.
• Shown in percentage
• 100% means as much

performance as the TUA gets
when it runs in isolation.

– The y-axis
• IPC throughput, that is, the

addition of the Instructions Per
Cycle (IPC) executed by
contender tasks

29

QoS results
Results
– Top-right corner

• better since they achieve higher
aperf and gperf.

– bottom-left corner
• worse since the result in lower

aperf and gperf.
– top-left bottom-right diagonal

• cannot be categorized as better
or worse

• they obtain lower gperf and
higher aperf or vice-versa.

30

Some examples
We need to understand how our application will behave to asses the
suitability of the EFL mechanism

– For applications with high average L2 hit rates EFL provides good results

31

MID=64 improves both TUA
guarantees and multicore
throughput

High MID values increase
TUA guarantees but degrade
multicore throughput

Partitioning

EFL MID=64

Partitioning

www.bsc.es

Conclusions

Conclusions

In this activity we have evaluated the suitability of the EFL
mechanism in a NGMP-like processor
EFL reduces the problems of cache partitioning in terms of
data sharing and task mapping:
– tasks may have shared pages or libraries whose actual sharing is

complicated since cache partitioning does not allow tasks to share data
on-chip.

Our results show that EFL is a very effective technique to
achieve good performance guarantees in a non-partitioned L2
cache setup at a reasonable hardware cost
– Only few counters and minor modifications in the L2 were required

33

www.bsc.es

Assessment of the Implementation of the
EFL Time-Randomised Cache

in the NGMP Architecture

Francisco J. Cazorla (TC),
Carles Hernandez,

Jaume Abella,
Leonidas Kosmidis

Marcel Verhoef (TO)

Software Systems Division & Data
Systems Division Final

Presentation Days
09/05/2017

Jan Andersson,
Nils-Johan Wessman

	Assessment of the Implementation of the �EFL Time-Randomised Cache�in the NGMP Architecture
	Motivation
	Agenda
	Motivation
	Motivation
	The issue: Inter-task interferences
	Example: software cache partitioning
	Setting the Scene
	Measurement-Based Timing Analysis
	Motivation
	Measurement-Based Probabilistic Timing Analysis
	Measurement-based Probabilistic Timing Analysis
	Example: The Cache
	Time-randomised caches
	A Time-randomized Processor for the Space Domain
	A Time-randomized Processor for the Space Domain
	Can we get more from the probabilistic approach?
	L2 Cache Inter-task Interference
	Probabilistically upper-bounding interference
	The implementation
	Eviction Frequency Limitation (EFL)
	EFL Required modifications
	Obtaining Time-composable WCET with EFL
	Results
	Experimental setup
	L2h vs 3 copies of (l2h,l2ms2h,s2m)
	L2h vs 3 copies of (l2h,l2ms2h,s2m)
	L2m vs 3 copies of (l2h,l2ms2h,s2m)
	Quality of Service (QoS) results
	QoS results
	Some examples
	Conclusions
	Conclusions
	Assessment of the Implementation of the �EFL Time-Randomised Cache�in the NGMP Architecture

