
Multi Operations Specimen Tester MOST Framework for AIT Testing and Operations

Antonio Pepiciello(1), Dr. Carsten Reese(2), Dr. Gilberto Arantes(3)

(1)

Universitätsallee 27-29
28359 Bremen

GERMANY
Email: antonio.pepiciello@ohb.de

(2)

Universitätsallee 27-29
28359 Bremen

GERMANY
Email: carsten.reese@ohb.de

(3)

Universitätsallee 27-29
28359 Bremen

GERMANY
Email: gilberto.arantes@ohb.de

INTRODUCTION

MOST was born of frustration.
In the early 2012 software AIT team started building tools in TOPE language to automatize test procedure and to support
activity in clean room. The objective was test different spacecraft models using the Central Checkout System (CCS) by
TERMA. Each tool was more focused on the specific model (AVM, EM, PFM, FM) than on the problem it was supposed
to solve. It ended up re-building for each satellite model the same tool. This became increasingly expensive in term of
hours and frustrating.
The only solution was a component approach based on reusability. Rather than building an application as self-contained
monolith (a huge ball of mud), there was a need to find a way to divide applications into smaller, reusable components.
The concept of AdvaNced Tester (ANT) was born. Ideally each ANT would be small enough to be implemented in short
time, it would be capable to fix one specific problem (logging, monitoring parameters and events), and complex and
interesting applications could be created by assembling ANTs: Anthill paradigm.
The component-based approach requires a powerful glue for assembling the components, and a shared software
framework. It was based on best practice and patterns, could provide that glue. Out of this thinking grew the Multi
Operations Specimen Tester (MOST) framework. In this paper, a specimen is defined as the subject under test e.g.
spacecraft, SCOES, payloads, etc.

ALLEVIATING THE COMPLEXITY OF EGSE TOOLS WITH FRAMEWORK AND PATTERN

A framework is a reusable, “semi-complete” application that can be specialized to produce custom applications [1]. A
pattern represents a recurring solution to a software development problem and helps to build on collective experience.
Complexity is a measure of understandability, and lack of understandability leads to errors [2]. A software system that is
more complex may be harder to specify, harder to design, harder to implement, harder to verify, harder to operate, risky
to change, and/or harder to predict its behaviour.
It is important to distinguish between “essential complexity” and “incidental complexity” [3]. Essential complexity arises
from the problem domain and mission requirements, and can only be reduced by de-scoping. Incidental complexity arises
from choices made about design and implementation, and can be reduced by making wise choices. MOST has been
designed to manage incidental complexity. MOST’s architecture provides helpful abstractions and patterns that promote
understanding, solve general domain problems.
In MOST’s design, unnecessary growth in complexity has been curtailed in particular by:

• Modular software architecture to isolate concerns and allow composition of individually tested elements.

• Use design patterns to capture sound solutions to recurring engineering needs, so less time spent reinventing
wheel, freeing resources to work on more important things.



Moreover MOST constitutes a “grass roots” effort to build on the collective experience of skilled Assembly Integration
Test (AIT) engineers and software engineers. Such experts already have solutions to many recurring problems in
AIT/EGSE. MOST captures these proven solutions and aims to provide a common set of building blocks called AdvaNced
Tester (ANT) to develop automated scripts, as well as complete implementation of reports and events monitoring.
Monitoring and control a specimen during AIT/EGSE tests is a complex problem due to the huge number of information
to have under control. Moreover as the size of the information increase (more telemetries, events, telecommands and out
of limits) the perceived complexity increase exponentially due the human cognitive limitations.
MOST framework is an abstraction of the real monitoring and control, and it is constructed by leaving out unnecessary
details and complexity. Abstracting helps to see the forest for the trees, allowing the tester to focus on, capture, document,
and communicate only the important aspects of the system under test.

SOFTWARE ARCHITECTURE

MOST has been divided in three components or layers implementing the Model View Control (MVC) pattern [4]. The
aim is to make the application in the problem domain independent from the user interface and the specific Mission
Information Base (MIB).
The tree components are:

• The model encapsulates core data from the Mission Information Base and functionality. The model is
independent of specific output representations or input behaviour.

• The view displays information to the user. A view obtains the data, it displays the data from the model. There
can be multiple views of the model.

• The controller monitors the changes of the entity in the model (telemetry changes) and notify those changes to
the view.

Fig. 1. Model View Controller (MVC)

An easy way to understand MVC: the model is the associated processing, the view is the window on the screen, and the
controller is the glue between the two.
The three components give a static view on the design and are the starting point to define the lower-level ones, down to
the software interfaces/classes. The top-down approach is vital for controlling complexity.

Interfaces Context

Underneath MOST is the TOPE language. TOPE stands for “Test and Operational Procedure Executive”. MOST uses
TOPE as a plug to connect and interact with the Central Checkout System (CCS).
The TOPE language was designed as an extension to TCL (Tool Command Language) by Siemens Austria for the
European Space Agency and deployed in partnership with Terma for numerous European spacecraft test systems. TOPE
is designed to support automated testing, commanding and monitoring of spacecraft and their subsystems through
exchange of telecommands and telemetry, in the form of packets. Incoming telemetry is transformed into telemetry
parameters through a process of extraction, calibration, and limit checking. Telecommands, which are sent as binary



packets, can be generated from mnemonic information. The transformation between binary and symbolic information and
vice-versa is configured using a MIB.
Any test script based on MOST is an application with an embedded TOPE interpreter. The test script can be extended and
customized by the end user (operator, test conductor, test engineer) in various ways. When used to its fullest, the running
test script based on MOST provides much more than a GUI to show the result of a test, especially in the early stages of
the test process. It can be used to isolate and test a subroutine in a library, to quick debug TCL code, to notify a real-time
value of a telemetry parameter, to send telecommands, to extend the log with users’ comments, etc. MOST has a well-
defined interface making it easy to extend with new mission specific libraries.
MOST does not access directly to the MIB files or to the telemetries values stored in the archives, but it uses the CCS
TOPE package to have those services.

Fig. 2. Interaction between the Operator, MOST and CCS

The Controller implementation is based on the subscribe TOPE function. MOST can subscribe to the parameters, and
receive the results asynchronously directly from the CCS.
MOST uses an efficient way to wait for many update: a callback function defined in the Controller is called by the CCS
whenever a variable is updated. Then the Controller will update the View with the new telemetries values. One benefit of
this approach is that no updates can be missed.
MOST implements in TOPE/TCL the Observer Design Pattern [5]. The CCS (the Subject) is the "Keeper" of the data
coming from the Specimen in terms of TM packets and parameters. The Controller plays the role of Observers. The
Controller registers itself with the CCS. Whenever data (telemetry parameters/packets) changes, the CCS broadcasts the
Controller the changes. In this way MOST does not need to know how the data change, but only to be notified by the
CCS about the change.
A key principle is that the observer does not know anything about the observers. It "publishes" a change and the observers
get notified of the change.

Fig. 3. MOST observer pattern implementation



Software Components Design

The software components are logically grouped in three different layers. A layer generally offers functionality to the layer
above and utilizes functionality from the layer below.
Each layer contains different modules/interfaces and encapsulates a dedicated functionality.
The interfaces providing this functionalities are mainly divided into Panes, Kernels, Factories, Status, and Descriptors
where:

• Panes handle the graphical part in the view.
• Kernels handle the specific business logic: they are the workers.
• Factories handle the creation of specific objects.
• Status store the actual status of a specific object.
• Descriptors handle the descriptions of the object in terms of attributes

Each software layer provides and requires a clear defined interface to and from other components and thus can be
developed, tested and extended independently from each other. Moreover, this architecture makes MOST usable in
different missions.
Each layer forms a separate item in the version control system.

Fig. 4. Software components decomposition in interfaces

The separation of the model (MIB) from the view and controller components allows multiple views of the same model.
If the user changes the model via the controller of one view, all other views dependent on this data should reflect the
change. To achieve this, the controller catches the changes from the CCS and notifies all views whenever its data changes.
The views in turn retrieve new data from the model and update their displayed information. This solution allows to change
a subsystem of the application without causing major effects to other subsystems. For example, you can change from a
non-graphical to a graphical user interface without modifying the model subsystem. You can also add support for a new
input device without affecting information display or the functional core. All versions of the software can operate on the
same model subsystem independently of specific ‘look and feel’.

Model Layer

The MIB contains all the static mission data: it defines the telemetries and telecommands characteristics of the mission.
This included the specification of length and type of parameters, out of limits, verification steps and validity. The Model
Layer abstracts the MIB information in a set of interacting objects like: telecommand, telemetry, out of limit and rule.
When the system is analysed, developed and implemented in term of natural objects it becomes easy to understand the
design and the implementation. Moreover, if the MIB changes only the Model Layer has to be update.



The Model Common Core is a set of objects that describe entities like telemetry parameters and telemetry packets that
can be used across mission in the same way. It implements the singleton pattern [8] in combination with the abstract
factory pattern [6]

Fig. 5. Model layer common core

The Model Specific Core contains objects to manage telecommands whose behaviour have to be customized to specific
mission, like enabling housekeeping report.

Fig. 6. Model Layer Specific Core

Controller Layer

The Controller layer reduces the coupling between the Model and the View. It is in charge to connect to the CCS and
receive notifications from telemetries update (push-based notification).



Fig. 7. Controller Layer

View Layer

The View presents to the user the information about telemetry parameters, telemetry packets and rule.

Fig. 8. View Layer



LEAVING A LEGACY

MOST has been deployed in several mission (Galileo FOC, MTG, EnMAP, SARah, EDRS-C) based on the CCS
developed by Terma. MOST is not only contributing to make the EGSE AIT activities more efficient and effective, but it
has spread a new mind-set. The Test Requirement Specification (TRS), the Test Procedure (TP) and the AIT Software
tools have been seen as different aspects of the same process. An attempt to codify and test a specimen’s requirement.
Each flows direct into the next, passing through the natural boundaries between Subsystem engineering tasks and AIT
tasks. The established process has encouraged feedback from testing the specimen using MOST into the Test Procedure
Specification. By doing that, a natural flow of knowledge has been moved from different actors (System Engineers, AIT
Engineers and Software Engineers) reducing the risk to duplicate information and increasing traceability from
requirements specification and AIT test reports. The way it has been possible, was to put the abstraction of the test in
MOST and the details in metadata (e.g. MIB). MOST knows what to do (the test to perform) and is actually the kernel of
the test. The metadata contain the details about the specific specimen, and are the only to change. This solution has
improved not only the reusability of tools, but also the communication between teams.

Fig. 9. MOST’s deployment

CONCLUSION

The MOST framework described in this paper illustrates how the development of AIT/EGSE software tools can be
simplified and unified. The key of the success of MOST is its ability to capture common software design patterns and to
consolidate those recurrent solutions into flexible framework components. This concept efficiently encapsulate and
enhance low-level specimen’s commanding and controlling.
MOST’s design does not espouse any revolutionary design ideas, but is based on sound common sense and it is now a
toolbox with a rich set of libraries and tools (ANTs). Tools amplify your talent [9]. The better your tools, and the better
you know how to use them, the more productive you can be.

REFERENCES
[1] https://en.wikipedia.org/wiki/Software_framework
[2] ECSS-E-HB-40A (Software engineering handbook) Issue A.
[3] F. P. Brooks, The Mythical Man-Month, Addison-Wesley, 1975.
[4] https://en.wikipedia.org/wiki/Model-view-controller
[5] https://en.wikipedia.org/wiki/Observer_pattern
[6] https://en.wikipedia.org/wiki/Factory_method_pattern
[7] https://en.wikipedia.org/wiki/Abstract_factory_pattern
[8] https://en.wikipedia.org/wiki/Singleton_pattern
[9] A. Hunt, D. Thomas, The Pragmatic Programmer: From Journeyman to Master, Addison-Wesley, 2000


