SESP2017 BIBLOS

© GMV, 2017 Property of GMV All rights reserved

THE BIBLOS PROJECT: BUILDING BLOCKS FOR EARTH OBSERVATION MISSION PERFORMANCE SIMULATORS

BIBLOS2 SCOPE

COMPUTATIONAL PERFORMANCE

USE OF BIBLOS

CONCLUSIONS AND FUTURE STEPS

29/03/2017

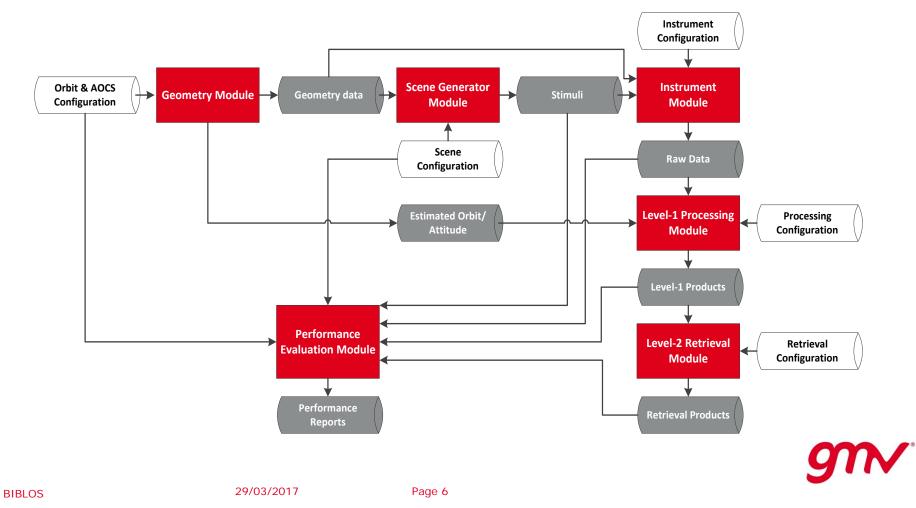
BIBLOS: BUILDING BLOCKS FOR EARTH OBSERVATION MISSION PERFORMANCE SIMULATORS

WHAT IS BIBLOS?

- BIBLOS is a library of SW models for Earth Observation End-to-End Simulators
- Part of ESA's effort to reduce the reengineering effort, promote reuse, and standandarisation.
- Other activities within ESA with this goal:
 - ARCHEO Reference Architecture for Earth Observation Missions
 - SS-E2ES Reference Architecture for Space Science Missions
 - **OpenSF** Simulation Framework
 - **EOCFI** Library for Mission Analysis for Earth Observation

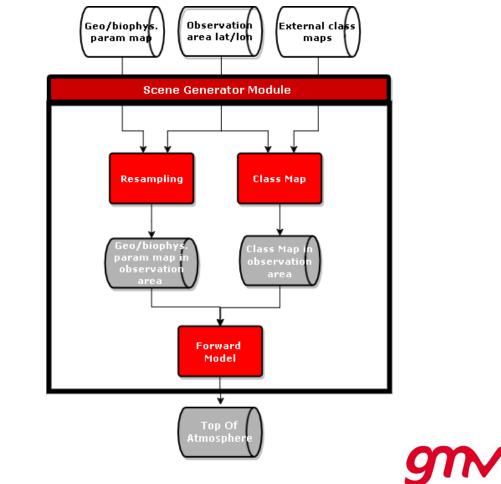
BIBLOS: BUILDING BLOCKS FOR EARTH OBSERVATION MISSION PERFORMANCE SIMULATORS THE BIBLOS PROJECT

- BIBLOS stands for BuIlding BLocks for Earth Observation mission performance Simulators.
- BIBLOS helps the user define the architecture, and provides validated units of software to help the user build its E2ES at a lower cost.
- A first phase of BIBLOS produced models for **Passive Optical** instruments.


Currently a second phase of the project (BIBLOS2) is developing additional models.

29/03/2017

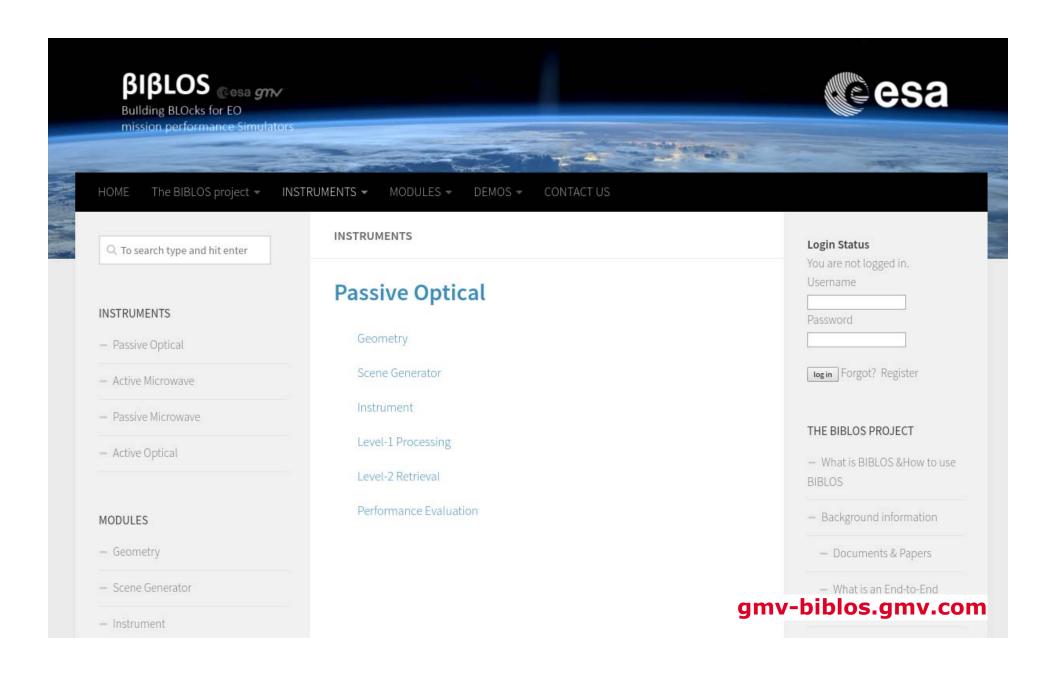
BIBLOS: BUILDING BLOCKS FOR EARTH OBSERVATION MISSION PERFORMANCE SIMULATORS

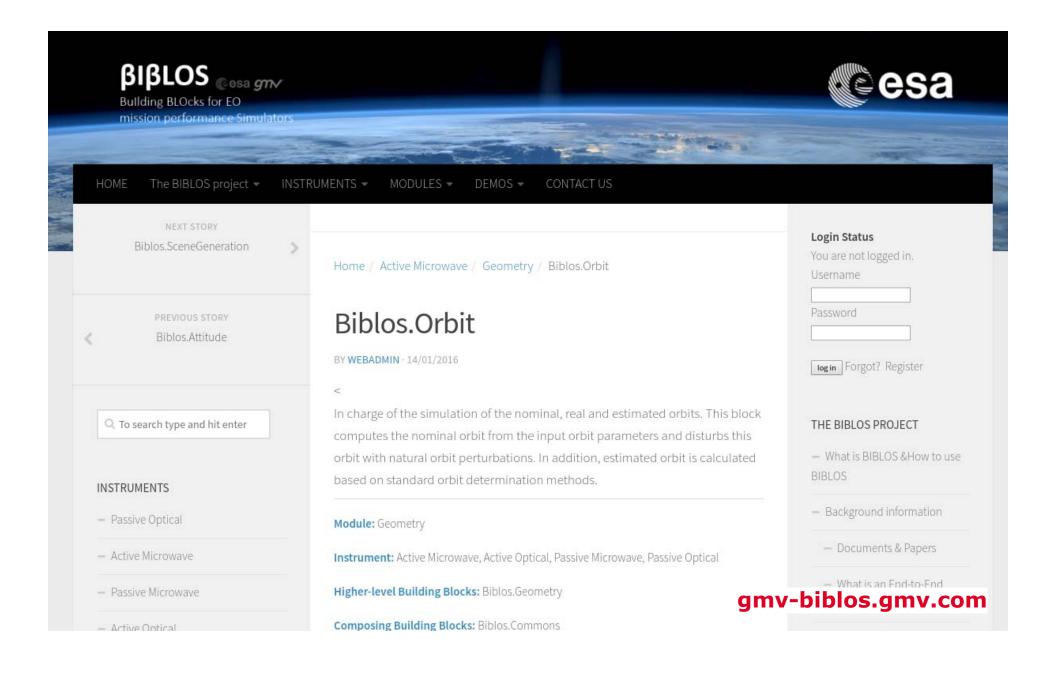

REFERENCE ARCHITECTURE

BIBLOS: BUILDING BLOCKS FOR EARTH OBSERVATION MISSION PERFORMANCE SIMULATORS

MODULES & BUILDING BLOCKS

 The library of software models for BIBLOS is composed of highlevel Modules, that themselves are constituted of low-level Building Blocks.





βIβLOS Bullding BLOcks for EO mission performance Simulate		(esa
		-
IOME The BIBLOS project -	INSTRUMENTS - MODULES - DEMOS - CONTACT US	
Q . To search type and hit enter	THE BIBLOS PROJECT	Login Status
	What is BIBLOS?	You are not logged in. Username
NSTRUMENTS	BIBLOS is a library of software models for Earth Observation End-to-	Password
 Passive Optical 	End Simulators.	
- Active Microwave	 Helps you define an architecture taking into account your mission particularities 	log in Forgot? Register
 Passive Microwave 	 Provides validated software units that are ready to be used 	THE BIBLOS PROJECT
Active Optical		— What is BIBLOS &How to use BIBLOS
IODULES	How to use BIBLOS?	 Background information
- Geometry	Step 1: Define the architecture of your mission based on the Instrument type of the mission.	 Documents & Papers
Scene Generator	Step 2: Download the Blocks and Modules.	v-biblos.gmv.co

HOW TO USE BIBLOS HOW TO USE BIBLOS

- Step 1: Define the architecture of the mission based on the Instrument type of the mission.
- Step 2: Download the Blocks and Modules.
- Step 3: Get started, instructions to execute BIBLOS software
- Step 4: Integration in OpenSF
- Step 5: Adapting the software for specific needs (development of new blocks, modification of blocks, reuse of software, etc.)
- License: ESA Software Community License

29/03/2017

ACTIVE MICROWAVES

- Development on the Geometry Module to support multistatic configurations.
- Scene Generation Module: parameterized scene generation (complex permittivity, conductivity), from which the complex sigma_0 can be retrieved as a function of geometrical parameters and polarization states (retrieviation in the Instrument Module).
- Scene topography based on DEM to calcualte normal vector to surface in interpolated grid.
- TOPS (Terrain Observation by Progressive Scan) mode
- Polarization: co-pol (VV, HH) and x-pol (VH, HV)
- Performance evaluation functionalities (Diamond diagrams, 2D resolution plots, Noise-Equivalent Sigma Zero, Ambiguity ratios, Swath geometry, Impulse Response Function, ...).
- Demo tailored for a mission based on Sentinel-1, with C-band SAR, in Stripmap (SM) and Interferometric Wide (IW) modes.

29/03/2017

BIBLOS2 SCOPE PASSIVE MICROWAVES

- Typical conical scanning microwave radiometer
- Microwave or millimetre wave part of the spectrum at constant incidence angle, with spatial, spectral and radiometric resolutions varying for the mission.
- Scene Generation Module: Dual polarization brightness temperatures of the Earth's surface and radiative transfer models of the atmosphere so as to generate the brightness temperatures top of the atmosphere (TOA) in the antenna reference frame.
- Instrument Module & Level-1 : Receiver chain model, including thermal drifts, a noise model as a function of the integration time (i.e. Allan's variance model), and a digital back-end with a number of radio-frequency interference detection and mitigation techniques.
- Demo: tailored for a mission based on EUMETSAT Polar System-Second Generation Microwave Imager instrument (MWI).

BIBLOS

29/03/2017

PASSIVE OPTICALS

- Evolution to the current developments for the Instrument Module
- Enhanced spectral response modelling.
- Modelling of effects through MTFs (diffraction, aberrations, defocusing, realisation, detector MTF, smearing, motion blur, desynchronisation, binning).
- Radiometric modelling to include Signal-to-Noise Ratio (SNR), Noise Equivalent Difference Temperature (NEDT) and non-linearity.
- Demo: based on a Multi-band imager instrument with 5 bands (Panchromating, Red, Green, Blue, NIR).

29/03/2017

NA BUBLOS SUB NO SUB

COMPUTATIONAL PERFORMANCES BIBLOS COMPUTATIONAL PERFORMANCE

Block name	Execution time (20km orbit)
Orbit Block	~30 seconds
Attitude Block	~30 seconds
AOCS/Instrumen	~60 seconds
t Coupling Block	
Scene	~36 hours
Interaction Block	
Resampling	~1 hour
Block	
Atmosphere	~2 hours
Simulator Block	
Spatial Block	~360 seconds
Radiometric	~13 seconds
Block	



BIBLOS

29/03/2017

COMPUTATIONAL PERFORMANCES PARALLEL COMPUTING

- Two most common hardware solutions to increase the software performance by applying parallel computing:
- Multi-core Central processing units (CPUs) typically 2-64 cores
- Graphics processing units (GPUs) typically 512-3072 cores per single GPU

The GPU Devotes More Transistors to Data Processing than data controlling activities, Fig. 3 in *CUDA C Programming Guide* [online] http://docs.nvidia.com/cuda/cuda-c-programming-guide

29/03/2017

COMPUTATIONAL PERFORMANCES BIBLOS COMPUTATIONAL PERFORMANCE

Technology	Advantages	Disadvantages
CUDA	1. Best performance.	1. Implementation effort.
	2. Support.	2. Compatibility.
OpenCL	1. Very good performance.	1. Implementation effort.
	2. Compatibility.	2. Support.
CPU	1. Performance*. (on the other hand	1. Implementation effort*. (OpenMP
technologies	can be remarkable worse than	API, SSE/AVX Extensions).
(OpenMP,	GPU)	2. Performance*.
SSE/AVX	2. Implementation effort* (parallel	
extensions)	extensions from standard library)	

OpenCL in BIBLOS-2: very good performance, compatibility with MAC computers (AMD graphic cards).

29/03/2017

CONCLUSIONS & FUTURE STEPS CONCLUSIONS & FUTURE STEPS

- The BIBLOS project is a practical guide for users who want to develop an Earth Observation performance simulator.
- BIBLOS already has available for the user community models for the Passive Opticals, and as this activity progresses, it will include models for the other two types of instruments.
- The second phase has an ambitious scope that includes the three most relevant types of instrument in the Earth Observation domain: Active Microwaves, Passive Microwaves and Passive Opticals.
- This activity will have an impact in the saving of reengineering effort in future EO E2ES.

29/03/2017

THANK YOU

TEAM: L. Soto (GMV) K. Szczepankiewicz (GMV) R. Kędzierawski (GMV) C. Negueruela (GMV) W. Oryszczak (GMV) S. Wrzesień (GMV) A. Camps (UPC) H. Park (UPC) P. Struzik (IMGW) H. Metselaar (ESA) R. Franco (ESA)

🝠 BLOG f ሬ 🞖 🛗 in እ

Alexand De

