
EVOLUTION OF SMP2 INTO ECSS SMP
SESP 2017, 28/03/2017
Peter Fritzen, Alberto Ingenito (Telespazio VEGA),
Robert Blommestijn, Vemund Reggestad, Anthony Walsh (ESA)

Agenda

28/03/2017 Evolution of SMP2 into ECSS SMP

History of SMP1, SMP2 and ECSS SMP

Major Changes done since SMP2 Issue 1.2
Concepts removed from the SMP2 Specification
Concepts added in the draft of E-ST-40-07
Clean-Up and Rationalisation

First Results from a Migration of SIMULUS Models

2

History of SMP1, SMP2 and ECSS SMP

28/03/2017 Evolution of SMP2 into ECSS SMP 3

History of SMP1, SMP2 and ECSS SMP

28/03/2017 Evolution of SMP2 into ECSS SMP

SMP1 Specification was released by ESA in 1999
SMP2 Configuration Control Board founded in 2001
SMP2 Issue 1.0 was released in 2004
SMP2 Issue 1.2 was released in 2005
First ECSS WG founded in 2007
First Draft of ECSS SMP completed in 2008
First Draft of ECSS SMP released as TM in 2011
Second ECSS WG founded in 2015
Second Draft of ECSS SMP for internal review

4

1999

2001

2004
2005

2007
2008

2011

2015

2017

Major Changes done since SMP2 Issue 1.2
Concepts removed from the SMP2 Specification

28/03/2017 Evolution of SMP2 into ECSS SMP 5

Concepts removed from the SMP2 Specification
Level 2 support, namely Assembly and Schedule files

In SMP2, it is possible to define a hierarchy of Models in an
external XML File, called an Assembly

Can be used to initially define a Simulation
Can be used to export and import Simulation

In an additional file (called Schedule), the events put on the
Scheduler service can be defined/exported/imported

This concept has been dropped from ECSS E-ST-40-07
Exchange of Simulation between different environments is no
longer standardised

Justification: No mandate from ECSS to include Level 2

28/03/2017 Evolution of SMP2 into ECSS SMP
6

06/04/2017
6

Concepts removed from the SMP2 Specification
Platform Independent Component Model

In SMP2 and E-TM-40-07, the Component Model (set of interfaces
to use for communication) has been defined in CORBA IDL, with a
specific Platform Mapping to the C++ Platform

In the draft of ECSS SMP, the interfaces are defined in C++ 11 only

Justification: No plan to support other Platform next to C++

28/03/2017 Evolution of SMP2 into ECSS SMP
7

Concepts removed from the SMP2 Specification
Mandatory versus Optional Services

SMP2 has the concepts of Mandatory and Optional Services
The Resolver is defined as an optional service

In the draft of ECSS SMP, all Simulation Services are mandatory

Justification: Use of optional services could affect portability.

28/03/2017 Evolution of SMP2 into ECSS SMP
8

Major Changes done since SMP2 Issue 1.2
Concepts added in the draft of E-ST-40-07

28/03/2017 Evolution of SMP2 into ECSS SMP 9

Concepts added in the draft of E-ST-40-07
Configuration File

SMP2 has a single file (the Assembly) to define hierarchy and state
Initial Values of Simulation Models are defined in the Assembly

In the draft of ECSS SMP (and in E-TM-40-07), a new Configuration
file format has been added

This file format can not only be used for initial values, but as
well at any later time
This format has already been used with SMP2 models

Justification: Initialising and setting values from file is essential.

28/03/2017 Evolution of SMP2 into ECSS SMP
10

Concepts added in the draft of E-ST-40-07
Link Registry Service and Linking Components

SMP2 has no support to track links to a Component
A Link can e.g. be a Reference to a Model
A Link can e.g. be a connection to an Event Sink
A Link can e.g. be a pointer to an Entry Point

In the draft of ECSS SMP (and in A-TM-40-07), a Link Registry
Services has been added

Components can implement ILinkingComponent to support this

Justification: E.g. for separation, all links to a component shall be
removed.

28/03/2017 Evolution of SMP2 into ECSS SMP
11

Concepts added in the draft of E-ST-40-07
Support for Failures

SMP2 has no support for Failures

In the draft of ECSS SMP (and in E-TM-40-07), two interfaces have
been defined:

IFailure is an interface to a single Failure (object)
IFallibleModel extends IModel to provide access to Failures

Justification: Modelling of failures shall be covered by the standard.

28/03/2017 Evolution of SMP2 into ECSS SMP
12

Concepts added in the draft of E-ST-40-07
Support for Failures (diagram)

28/03/2017 Evolution of SMP2 into ECSS SMP
13

+IsFailed() : Bool{query}
+GetFailures() : FailureCollection
+GetFailure(name : String8) : IFailure

IFallibleModel
+Fail()
+Unfail()
+IsFailed() : Bool{query}

IFailure

IObject IModel

Concepts added in the draft of E-ST-40-07
String Support for Data Flow and Events

SMP2 has partial support for strings: Only fixed-length strings are
supported

In the draft of ECSS SMP (and in E-TM-40-07), String8 has been
added to the enumeration of primitive types, and to AnySimple

Use of Strings in Data Flow
Use of Strings in inter-component Events

Justification: String support was found essential

28/03/2017 Evolution of SMP2 into ECSS SMP
14

Concepts added in the draft of E-ST-40-07
Improved Support for Data Flow

SMP2 has basic support for data flow between fields of simple type,
triggered externally e.g. via Assembly and Schedule files

In the draft of ECSS SMP, this has been extended significantly to
support fields of complex types (structures and arrays), and to allow
for autonomous data transfer triggered by the models themselves

Justification: Support for data flow was not found to be sufficient.

28/03/2017 Evolution of SMP2 into ECSS SMP
15

Concepts added in the draft of E-ST-40-07
Interfaces to Access Fields

SMP2 allows publication of Fields, but has no interfaces for Fields

In the draft of ECSS SMP (and partially in E-TM-40-07), various
interfaces to access fields as objects have been defined

IField is the base interface for all fields
ISimpleField is the interface to a field of simple type
IStructureField is the interface to a field of structure type
IArrayField is the interface to a field of an array type
IDataflowField is the interface to a field that supports data flow
IForcibleField is the interface to a simple field allowing forcing

Justification: Data flow and forcing require field objects (interfaces).

28/03/2017 Evolution of SMP2 into ECSS SMP
16

Concepts added in the draft of E-ST-40-07
Interfaces to Access Fields (diagram)

28/03/2017 Evolution of SMP2 into ECSS SMP
17

+GetView() : ViewKind
+IsState() : Bool{query}
+IsInput() : Bool{query}
+IsOutput() : Bool{query}
+GetType() : IType

IField

IStructureField

«native»
FieldCollection

IDataflowField

IForcibleField

ISimpleField IArrayField

IObject

Concepts added in the draft of E-ST-40-07
Improved Support for Integration of Emulators

SMP2 has limited support for an integration of an Emulator with the
SMP Scheduler and Time Keeper services.

In the draft of ECSS SMP, an Emulator can modify Simulation Time
(via SetSimulationTime), so that during a call-out, other Models get
the correct simulation time. For that, it can query for the simulation
time of the next event on the scheduler (as it must not set a
simulation time beyond the time of the next scheduled event).

Justification: Accurate timing is essential for many simulators.

28/03/2017 Evolution of SMP2 into ECSS SMP
18

Integration of Emulators

28/03/2017 Evolution of SMP2 into ECSS SMP
19

Concepts added in the draft of E-ST-40-07
Visibility Kinds

SMP2 has only two levels (visible/invisible) for Fields, and no way
to control visibility of Operations or Properties.

In the draft of ECSS SMP (and in E-TM-40-07), four visibility kinds
are defined for Fields, Operations and Properties:

All
Expert
Debug
None

Justification: Need to be able to control visibility in User Interface.

28/03/2017 Evolution of SMP2 into ECSS SMP
20

Major Changes done since SMP2 Issue 1.2
Clean-Up and Rationalisation

28/03/2017 Evolution of SMP2 into ECSS SMP 21

Clean-Up and Rationalisation
No Management namespace and Interfaces anymore

In SMP2, several interfaces come in two flavours (e.g. IObject
and IManagedObject), to minimise the effort for a minimal
implementation.

In the draft of ECSS SMP, no Management interfaces are included
anymore, and the functionality has been merged with the
“unmanaged” interfaces (or partially removed).

Justification: It was found that all models implement Managed
Interfaces anyway, as this can be fully automated via Code
Generators.

28/03/2017 Evolution of SMP2 into ECSS SMP
22

Clean-Up and Rationalisation
Services versus Models

In SMP2, Models and Services differ fundamentally, both in their
interface (IModel versus IService), and in their state machine
(which is only defined for Models)

In the draft of ECSS SMP, Services are almost identical to Models

Justification: Services need all features that Models need:
They may publish information, and need to store their state
They may access other services (e.g. for Logging)

28/03/2017 Evolution of SMP2 into ECSS SMP
23

Clean-Up and Rationalisation
Changes in the Interface Hierarchy

28/03/2017 Evolution of SMP2 into ECSS SMP
24

«SMP2interface»
IManagedComponent

«SMP2interface»
IDynamicSimulator

«SMP2interface»
IComponent

«SMP2interface»
IService

«SMP2interface»
IObject

«SMP2interface»
IComposite

«SMP2interface»
ISimulator

«SMP2interface»
IModel

«SMP2interface»
IManagedObject

«SMP2interface»
IManagedModel

IComponent
(Smp)

IModel
(Smp)

IObject
(Smp)

IService
(Smp)

ISimulator
(Smp)

IComposite
(Smp)

Clean-Up and Rationalisation
Use of C++ 11

In SMP2, several types (e.g. 64 bit integers) are defined in a header
file “Platform.h” that needs tailoring for each platform.

In the draft of ECSS SMP, no such tailoring is needed anymore, as
C++ 11 provides all required data types as part of the language.
Further, additional keywords like nullptr or noexcept are used.
Finally, throw declarations have been removed (deprecated).

Justification: Coming standard shall be based on C++ 11.

28/03/2017 Evolution of SMP2 into ECSS SMP
25

Clean-Up and Rationalisation
Removal of all implementation from the Standard

In SMP2, some code is provided e.g. for the exceptions defined in
the specification, or for the registration of types into the type
registry.

In the draft of ECSS SMP, no implementation code is included
anymore.

Justification: The standard shall only define interfaces.

28/03/2017 Evolution of SMP2 into ECSS SMP
26

First Feedback from a Migration of SIMULUS Models
Concepts added in the draft of E-ST-40-07

28/03/2017 Evolution of SMP2 into ECSS SMP 27

First Feedback from a Migration of SIMULUS Models
Approach

The SMP2 Generic Models (GENM) of SIMULUS cover a variety of
SMP2 based interfaces, data types, classes and models
In a first exercise, the existing source code was compiled against
the new interfaces defined for ECSS SMP
Where possible, #define was used to “translate” existing code
Remaining changes were minor, and can be categorised:

Changes in code generated by a Code Generator
Changes in hand-written code

The following slide provides some high-level statistics

Note: A full migration would require additional changes, mainly due
to the use of new features (e.g. forcing and failing).

28/03/2017 Evolution of SMP2 into ECSS SMP
28

First Feedback from a Migration of SIMULUS Models
Some Numbers

The SIMPACK Generic Model is missing, as it has not been
migrated yet

It defines its own AnySimple with operator overloading
Problems are not with SMP interface, but with use of MDK

28/03/2017 Evolution of SMP2 into ECSS SMP
29

Model Files Lines Modified Lines

Common 353 42724 16 109

PEM 119 29350 2 2

SIMDYN 37 12073 1 4

TNET 69 14086 1 3

SENSE 91 18219 1 2

Generic 172 42724 3 8

