
Transforming Automated Procedure Development with a state of the art IDE

Workshop on Simulation and EGSE for Space Programmes (SESP)
28-30 March 2017

ESA-ESTEC, Noordwijk, The Netherlands

Bjoern Kircher(1), Colin Borrett(2)

(1) Airbus DS GmbH
Claude-Dornier-Str.
88090 Immenstaad

Germany
Email: bjoern.kircher@airbus.com

(2) Airbus DS GmbH
Claude-Dornier-Str.
88090 Immenstaad

Germany
Email: colin.borrett@airbus.com

ABSTRACT

Developing automated monitor and control procedures for AIT, on-board operations or flight operations requires
detailed information on how to operate the spacecraft with respect to the latest TM/TC definitions. In the case of AIT or
functional verification activities, the procedure developer also requires detailed information about the spacecraft design,
interfaces and the planned verification activities.
Existing procedure development environments offer little or no integrated data continuity from the Spacecraft
Reference DB (SRDB) or the Functional Verification Management tool (FVM) to the procedure being developed. Most
importantly, any evolution of data in the SRDB (e.g. update of TC parameter) or FVM (e.g. update of Test
Specification) needs to be identified and updated manually by the developer, introducing the possibility of error or
misconfiguration.
Therefore, in close cooperation with the end users, Airbus DS developed an integrated procedure development
environment to ease and automate the process of data exchange/continuity, and provide a coherent snapshot of the data
relevant to the developer. This environment further supports the full engineering process from using the actual design
data (e.g. TM/TC), link to verification requirements and related test specification, up to a target language specific export
towards the CCS or MCS.

The paper will introduce and detail the AIRBUS DS development, and the advantages that have been realized by using
the integrated development environment for automated procedures.

CONTEXT

When discussing the development of automated procedures, the context described in this paper addresses mainly the
writing of test procedures for Assembly Integration and Test (AIT) and Functional Verification (FV). However, we can
consider that these are similar to those used to operate the satellite from ground and to procedures that are running on-
board. Indeed, the basic principles of automated procedures are to send telecommands (TC), receive telemetry (TM) and
use control structures to manage the test, and these principles are common to both test and operations procedures.

In order to effectively develop these procedures, very detailed knowledge about the system under control is needed,
specifically regarding the control and monitoring of the spacecraft and the equipment on board. This knowledge begins
with the overview of the spacecraft design, a detailed understanding of the TM/TC interface with all the possible
commands and available monitoring parameters and packets, as well as the information about the test or operational
need itself.
The management of the relevant design and system data is not a problem today and a tool landscape to manage and
access the data is already well-established and integrated (see Fig. 1. Current tool landscape).

The two most important applications in terms of data management are the System Reference Data Base (SRDB) and the
Functional Verification Manager (FVM).

• SRDB: The SRDB is the main tool based on the Airbus DS RangeDB infrastructure (RangeDB: The corner
stone of the Model-Based Engineering approach at Airbus DS to manage data shared across engineering
disciplines in a consistent manner). It is the central data set and repository containing the definitions and
operational data utilized during the spacecraft engineering and development phases, as well as for both ground
and flight data during spacecraft operations. It includes data such as product tree, equipment parameters,
configuration data, TM/TC definitions, calibration curves and many more.

o The SRDB is currently in use by 20 spacecraft (satellite & launcher) projects with more than 300
active users.

• FVM: Based on existing tools with over 10 years of heritage, and re-hosted using the flexible RangeDB
infrastructure, FVM provides a modern digital continuity tool to support the FV process through :

o Definition of test documentation data such as verification tasks, specification, procedure or report
o Requirements traceability, from import of DOORS requirements, to the definition of the Test

Specification and Test Procedure, to execution and storage of Test Sessions, and finally to generation
of the Verification Control Document.

The SRDB is providing all the TM/TC definitions as well as the product structure of the satellite. The product structure
and related data are used by FVM, together with a mapping to the detailed system requirements coming from DOORS
(Rational Dynamic Object Oriented Requirements System – a requirement management tool). Thanks to the system
design data from SRDB and the requirements from DOORS, FVM is used to define the test specifications on high level.
From these specifications, the test engineer can derive directly the test procedure to be executed and provide a link back
to the tested requirement. It is important to note that test procedures in FVM can be manual procedures or automated
procedures.
Both SRDB and FVM integrate an interface to the PLM system (Windchill) which allows an easy and direct access to
documentation linked to SRDB or FVM data.

Fig. 1. Current tool landscape

The problematic point today is that even if the connection between SRDB and FVM is highly integrated, the tool to
develop automated procedures that is using data from both is not integrated. It is still a more or less manual task to get
the information regarding TM/TC, spacecraft design and test needs based on already digitally generated documents.
Evolution of data in the SRDB (e.g. update of TC parameter) or FVM (e.g. update of Test Specification) needs to be
identified and updated manually by the developer, introducing the possibility of error or misconfiguration.

SRDB FVM

Windchill
(PLM)

CCS

Doors

AP Editor

Documentation

TM
/TC

Definition

Test Results

Product
Structure

Requirements

Manual Step

Automated Step

Test SpecificationTM/TC Definition
Product Structure

To eliminate this source of problems the goal was to define a state of the art Procedures Development Environment
(PDE) that is fully integrated in the already available tool landscape. This new application should allow:

• Usage of coherent data baseline release (from SRDB and FVM)
o All tools, developers, testers are using the same data baseline

• Full digitalized process from design data (e.g. TM/TC), link to verification requirements and related test
specification, up to the automated procedure running on CCS/MCS

• Automated generation of AP documentation and generation of over AP manual
• Common tool used by all users and for all use cases (AIT, FVI, Operations)
• State of the art IDE supporting features like:

o Auto completion
 Related to procedure language
 Related to items in the spacecraft product structure

o Tool tips
o Syntax highlighting
o Online help

DATA CONTINUITY

As identified previously, the primary goal of the PDE is to provide the means to connect the various disparate tools to
be used without needing a dedicated export/import process, to synchronize release cycles so that all data being utilized
is from the same baseline, and particularly to easily identify discrepancies in this baseline during the daily work flow of
the procedure developer. The relationship of the AP editor to each of the tools is described in detail below.

Spacecraft Reference Database (SRDB)

In the existing tool landscape, when the SRDB architect releases a new database, it requires that the new version be
installed or used on many systems (for example, the checkout system, or the data retrieval system), as shown in Fig. 2.
Export / Release Cycle for SRDB data. For the test engineer implementing a procedure, this might mean that they
would need to search the export by hand (using knowledge of the existing SCOS-2000 MIB tables), through the user
documentation delivered with the SRDB (the TM/TC Handbook), or online using the CCS. It is often the case that
instead of a simple description (e.g. Star Tracker Connection Test), the command or telemetry mnemonic is needed by
the engineer, and the use of this also makes the resulting automated procedure less readable.

Fig. 2. Export / Release Cycle for SRDB data

Within the PDE, the goal of the RangeDB data continuity component was to remove the need for a new
export/installation process, and to give the developer a direct view to the available TM/TC including the description,
mnemonic, and parameters. This view is currently based on the product tree provided by RangeDB, but can be filtered
or re-ordered depending on the developer preferences.

In a perfect world, the latest released database would be in use on all the dependent systems. However, it is clear that in
the real world, the most recent database version is not always the same version that is installed on the bench, either
because of the needs of the test operators, or an older version of OBSW which is installed. This can have a major
impact when the test procedure is written, run, or debugged, leading to errors which need to be solved manually at the
time of execution by the engineer, or which have to be justified in a post evaluation check of the results.

Instead, with the direct connection to SRDB, the test procedure engineer is able to control which version of the database
is used for writing the procedure, and together with the syntax highlighter, provides feedback to the developer if their
procedure is compatible with the version of the database selected (a similar function can be found in CCS5, where a
procedure can be checked prior to execution). For example if the user has selected a version of the database which does
not contain the service 17 command, then any procedure loaded will clearly identify the use of the command as an
error.

With this component, the engineer writing the procedure knows that not only do they have the most recent or most
applicable version for their needs, but that its contents are easily searchable and contain as much supporting information
as possible.

Functional Verification Manager (FVM)

Within FVM, manual procedures (otherwise known as “step-by-step” or “operator” procedures) are maintained with the
detailed steps which the operator may need to perform, alongside calls to automated procedures which are subsequently
developed in the PDE. These “master” automated procedures provide the complete link to the test specification and the
requirements to be verified.

In order to prepare a master AP, the concept of a “skeleton” automated procedure is introduced, defining the main test
steps which are to be executed. This provides a clear link between test specification steps (where the requirement is
mapped) and the final test procedure execution (for requirement closeout). Specifically during post-processing, a
unique identifier specific to each test step can be mapped to the execution results, and allow a customer to navigate
directly to the location in the logs where their requirement has been declared as verified.

Take as an example the simple high level test specification steps as defined below:

• 10000 Switch S/C mode to BTM
• 20000 Configure OBC to use the A branch
• 30000 Switch on RIU

Note: Both FVM and the PDE are designed to allow nesting of test steps, and hence this simple example can be
expanded to include sub-steps or other keywords as needed.

Through the connection with FVM and the test specification, the PDE can then generate the native language skeleton
AP, which must be populated by the test engineer (for example by calling the required utility code to switch the
spacecraft into Basic Test Mode). The example is shown in Fig. 3. Auto-generated skeleton.

Fig. 3. Auto-generated skeleton

We can take this concept one step further, and consider the impact when a test specification is up-issued to take into
account a new requirement or review item. Whilst it is clear to the specification writer that the change may necessitate
an update to the procedure, it will not necessarily be identified directly by the procedure developer.

From this, two scenarios can be imagined – in the first, an update to the test specification requires a completely new test
step to be executed, or that a step is removed. In this case, the PDE identifies that the skeleton needs to be re-generated
but with the mandatory option of retaining any code entered by the user. In the second scenario, an update to the test
specification results in a change in the text (for example in the description of the test step, or in the criteria for test
success). In this second case, the PDE identifies the modified steps, and shows the test procedure developer what data
has been modified in the test specification.

Procedure Development

Part of the problem is the editor itself in which the automated procedures are developed. As presented earlier, the “AP
Editor” is usually an integrated part of the CCS, or alternatively a plain text editor (particularly in the case where the
CCS is an external product with few licenses available for developers). Both of these types of editor involve manual
steps from the AP developer to write their procedures, and provide little or no information about the surrounding
infrastructure or supporting documentation.

With projects becoming more generic, and to enable efficient reuse of already existing code, the procedure developer
must have a view on already developed code, such as defined support libraries (which could be generic or project
specific) or APs developed within the frame of current or previous projects. Particularly within the same project, a
problem may have already been solved by another developer (for example the switch on sequence of particular
equipment), and hence re-use of the existing code decreases development time and increases confidence in the final AP.
With this in mind, it was identified that there was a clear need in the PDE of browsing the latest or historical versions of
the APs in an online system or a configuration control system such as SVN or Git, and from here being able to easily
retrieve or view reference source code.

As well as access to re-used code, when developing (or indeed executing) an automated procedure, it is important that
the test executor has easy access to the reference documentation, such as safety precautions or operator user manuals,
which might be applicable to the item / system that is under test. To this end, the Windchill Document Management
system used by Airbus allows to generate external HTTP links to documents. These can be combined with the Product
Tree so that the test procedure developer can see which documents are available for any particular item under test, and
integrating this information into the PDE provides the developer with an easy overview of the documents which might
be useful to them.

Test Execution and Debugging

Once the test procedure has been developed to a level which can be executed, the usual process is to move from the AP
Editor and debug the procedure directly on the CCS connected to a simulator. This switch between environments can
require a switch to a different machine (in the normal case that the CCS is shared between many developers), copying
the files or uploading them to a configuration control system and updating the environment on the target machine, and
then starting up the system into the configuration required to execute the test. Doing this many times for debugging a
procedure increases the number of manual steps where errors can occur, which can take useful time away from the test
procedure developer, and increase the unavailability of the test system to other developers.

Part of the identified solution to this was the development of a status webpage for each remote CCS machine, showing
the current operator and identifying which systems are available. However, the ideal solution was to allow the
developer to write, debug and finally execute the test procedure all in the same environment.

PDE – A STATE OF THE ART IDE

In addition to previously explained embedding of the PDE in the overall tool landscape in terms of processes and data
continuity, it was also a goal to base the development environment on actual state of the art technologies. For usability,
the PDE should include modern development features as they are known from classical SW development IDEs.

Specifically, standard features like code completion, syntax highlighting, error checking or refactoring capabilities
should be available, as well as source navigators or navigation to and from references. However, the main focus was
placed on support functions, enabling the tool to be intuitive and usable by non-SW developers. These support functions

included features like tool tips that are displayed by hovering over a keyword (e.g. showing the description of a
function), or simple navigation between e.g. main procedure and referenced sub procedures.

All these features primarily support the writing of the procedure itself, but it was also mandatory to implement and link
the data coming from SRDB and FVM, and include those somehow in the developers view. Hence, similar to the
features supporting the code writing of the target language, the same features should be available for the usage of data
related to the spacecraft. An example of this is the auto completion of source code syntax, where the code completion
should also work for data items like TMs or TCs. And further expanding on this idea, the auto completion should also
work on the product structure itself. In this way, it should be possible for the user to get TM/TC data thanks to the
location in the product tree (e.g. spacecraft -> subsystem -> equipment -> commands -> “on”).

For usability of the tool, the access to TM/TC should also allow the now standard “drag and drop” features. Similar to a
project navigator showing all the source files, this involves the use of a TM/TC tree based on the product structure of
the spacecraft, where the user can navigate and simply drag and drop the related TM/TC to the procedure editor (see
Fig. 4. TM/TC Tree View).

Fig. 4. TM/TC Tree View and Editor

Furthermore, in this TMTC view tooltips are implemented to show additional information such as descriptions coming
from the SRDB or FVM, specifically when the user is pointing to one of the TMs or TCs. As mentioned previously, all
the description of the test procedure and the related test steps which are managed in FVM are also included in the
procedure source code.

Target Language Support

The target language supported by the PDE is the language that is used as procedure language in the CCS or MCS. The
default language is currently TCL since this is the baseline for the CCS systems that are currently used with the PDE
(see right hand part of Fig. 4. TM/TC Tree View). But the PDE itself is not bound to one language, and thanks to a
flexible plugin based concept, the PDE can be configured to support several target languages. It is even possible to
develop procedures for different target platforms within one PDE instance. Hence, in addition to TCL there is already
a prototype available to support Java APPG, the procedure language for the upcoming new checkout system EGS-CC.

Developing automated procedures using the target language of the CCS is mainly a request from the teams preparing
the AIT and FV procedures. Furthermore, the possible use of a higher level language like a DSL (Domain Specific
Language) was explicitly rejected since the procedures, especially for AIT, are often very complex with sophisticated
features such as patching data from file or doing tricky mathematical computations.

Compared to the complex AIT and FV procedures the scope of procedures used for flight- or onboard operations are
more basic and the use of a specific tailored language for that is convenient.

Domain-specific language

As explained before there are needs to use the target language of CCS/MCS directly, but especially for flight- or
onboard operations it make sense to use a more simplified language dedicated to its use. Therefore, a so called DSL is
also part of the PDE development, allowing the user to develop the procedures on a generic level with a subsequent

transformation of the DSL procedure content to the target language. Thanks to this DSL, it is possible to generate
procedure source code for different target platforms (e.g. if CCS and MCS are not based on the same system) based on a
generic DSL based procedure.

Fig. 5. DSL

Technologies used

The Procedure Development Environment is implemented with Java 8 as an Eclipse Rich Client Application (RCP) to
provide a standalone, ready to use application. Eclipse is enriched with several plugins like the dynamic language
toolkit for tcl to enable the use of tcl, the groovy language pack to support the DSL editor and subversive for svn
integration.
In addition to the several eclipse plugins the Airbus RangeDB infrastructure is heavily used to provide features like
HTML exports or exports to MS Works and Excel but also features like the code generation framework of RangeDB is
used to transform the DSL to the target language.

CONCLUSION

The introduction of a harmonized Procedure Development Environment (PDE) has shown that an integrated approach
using a state of the art IDE for automated procedures provides a lot of advantages, not only during the development, but
also during maintenance phases. Closing the gap in the dataflow from system design and TM/TC data towards PDE is
one of the most beneficial improvements achieved with the PDE. Thanks to a close link to the SRDB all the TM/TC
definitions are available within the development tools, but even more crucial are the update and change processes from
SRDB to PDE, where changes within the TM/TC definitions are directly propagated to the PDE and dependent
procedures are highlighted. This is especially important in the early development phases where the design is not really
stable but also in the later phases during maintenance where it is not simple to know all the impacts of data changes
within the procedures.

The same is valid for data defined in FVM and used in PDE. All updates of test specifications are visible in the PDE
and e.g. missing test steps in the automated procedures are highlighted and an actual status is generated showing the
status of procedures that have to be developed (FVM baseline) versus the procedures that are already done.

In addition to a consistent and continuous use of data, the simplifications and supporting functions of the IDE
contributes also to a large extend to the overall performance improvement in developing automated procedures. From a
user perspective, contextual help like auto completion, navigation to reference based on procedure code (also based on
system design data), has been one of the key assets.

In summary, the introduction of the PDE showed the envisaged advantages and process improvements. The next steps
will be to link it closer to EGS-CC and further improve the user experience.

