

Model Based System for requirements and design

Model Based System Engineering is spreading

Model Based System Enginnering widely deployed at Thales Alenia Space for Avianics design

- * Use of Arcadia methodology with Melody Advance / Capella Modeling Tool (open source) https://www.polarsys.org/capella/
- System / sub-system transition approach: Modelling is performed at different levels
- Engineering model allows to design system elements (architectural aspects)

2017 Thales Alenia Space

THALES ALENIA SPACE OPEN

From Engineering Models to SRDB

System Reference Database is a data repository allowing for data management and data sharing.

The repository is populated and continuously updated by Engineering domains

Technical data of the system elements is progressively detailed and refined

SRDB new challenges

SRDB needs to evolve

In the past, SRDB was used only to share spacecraft M&C data across domains

Adoption of model based techniques creates need for more technical data sharing

SRDB perimeter is increasing: new domain users / new models taken into account

Product lines add requirements for reuse and traceability of system elements across

SDB-NEXT Data Organization

Data Organization follows ECSS standards

System Elements are defined by ECSS 10-23

* They host multiple data with domain specific models

*shared data is maintained within one common metamodel

Common metamodel conforms to EGS-CC CDM

- Starts from M&C perspective
- Extended for additional data (link with harness, test results)

SDB-Next: Data Configuration Management

Smooth branch management is a key concept

2017 Thales Alenia Space

Within SDB NEXT Kernel

- Data is managed in configuration at System Element level
- Rely on GIT for flexibility with tag and branch management
- Change Tracking is performed in link with the tool currently used in TAS

THALES ALENIA SPACE OPEN

06.04.17

Ref. Modèle = 83230347-DOC-TAS-EN-004

Eclipse Modelling Framework isolate metamodel evolution from applicative code

Metamodel will evolve in the timespan of a product line

New needs come from engineering processes improvement

In SDB-NEXT Architecture:

- Most kernel services work at System Element level, independently of the actor content
- Kernel is extended by plugins (typically to implement domain specific views).
- > Data content aware services rely on metamodel generated plugins.
 - Metamodel ecore representation allows some generic services such as checks and comparison
- ** Kernel is designed for multiple metamodels (e.g. successive versions)*
 - allows migration decision at program level

2017 Thales Alenia Space

THALES ALENIA SPACE OPEN

SDB-Next - Conclusion

SDB NEXT is under development

First objective is to manage M&C perspective of SPACEBUS NEO Product Line

Already designed for extension to cover all technical data domains that make up the virtual satellite

Thank you for your attention

Questions?

