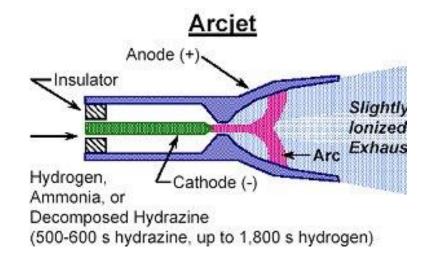


SITAEL AT-1K ARCJET

Cifali G., <u>Gregucci S.</u>, Misuri T.


Clean Space industrial days, ESTEC 24-26 October 2017

Arcjet Working Principle

The Arcjet thruster belongs to the family of electro thermal thrusters:

- the working fluid undergoes a classical gas-dynamic acceleration;
- the fluid is heated directly by an electrical discharge (arc) between a coaxial electrode (cathode), placed upstream the nozzle throat (constrictor) and the nozzle itself (anode).

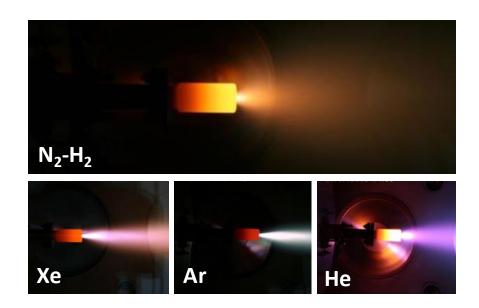
AJ developers: Aerojet (flight heritage), SITAEL, IRS, Plasmadyne, Osaka University, LeRC, BICE.

SITAEL AT-1k Arcjet

SITAEL starting point is the existing **AT-1k arcjet**, developed since the late '90s and optimized in the past three years with helium, argon, xenon, nitrogen or mixtures of nitrogen and hydrogen as propellants. Even if not directly tested with hydrazine, AT-1k compatibility with blends of nitrogen and hydrogen makes it suitable also for this propellant.

The **SITAEL AT-1k arcjet** is designed for a wide range of applications:

- Orbit raising;
- Controlled or semi-controlled re-entry at EOL;
- EOL graveyard repositioning;
- Collision avoidance;
- Reaction wheels desaturation.



SITAEL AT-1k Arcjet

Main SITAEL activities on AT-1k:

- AT-1k characterization with Xe, Ar, He and N_2 - H_2 mixture;
- Assessment of AJ lifetime (throat erosion) by test;
- More than **100 h** firing (cumulated);
- AJ PPU design and development;
- Arcjet based Propulsion Subsystem (APS) design (CS BB25).

AT-1k main specifications Propellant Ar, He, Xe, N₂, H₂, blends 1 kW **Power Operating Voltage** Operational: 30-90 V – Ignition: 150 V **Operating Current** 10-20 A **Feeding Pressure** 0.8-3 bar Thrust Up to 150 mN **Specific impulse** Up to 600 s **Thruster Efficiency** Up to 50% **Thruster Mass** < 1.2 kg

CS BB25: Introduction

In the frame of the **ESA CleanSpace** (CS) project (**BB25**), SITAEL activities have been focused on the following areas:

- Assessment of the main Arcjet based Propulsion Subsystem (APS) requirements in accordance with the Large System Integrator (LSI);
- APS architectural design, including trade-off analyses, suitable COTS selections, analysis and design of customized components and system impact at spacecraft level;
- **APS performance**, mass, power, cost **budget** evaluations;
- **APS reliability** evaluation at EOL;
- APS demisability evaluation;
- APS development plan analysis.

Requirement topic	CASE #1	CASE #2
S/C mass	800 kg	1500 kg
Main operating media	Hydrazine, LMP-103S (green prop.)	Hydrazine, LMP-103S (green prop.)
Thruster Input Power	Up to 1 kW	Up to 3 kW
Thrust level	≥ 100 mN	≥ 300 mN
Specific impulse	≥ 400 s	≥ 600 s
Thruster mass	≤ 1.2 kg	\leq 1.2 kg/kW
Mission and total impulse	90-120 kNsNominal operationUncontrolled re-entry	700 kNsOrbit raisingControlled re-entry
Enviroment	Total ionizing dose; atomic oxygen fluence; mechanical and thermal env.	Total ionizing dose; atomic oxygen fluence; mechanical and thermal env.
Design and functional	System reliability, mass and cost; materials; flow barriers.	System reliability, mass and cost; materials; flow barriers.

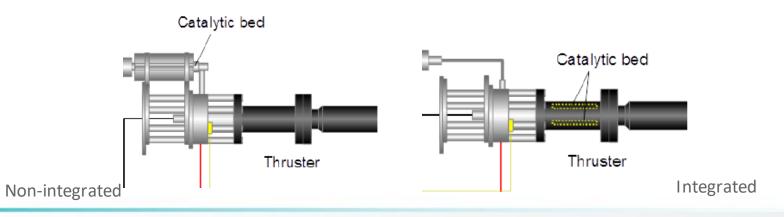
CS BB25: Trade-off (1/2)

Hydrazine vs LMP-103S

- Thrust @ fixed MFR and power: hydrazine > LMP-103S (≈10-31% lower)
- Isp: hydrazine > LMP-103S (\approx 9-31% lower)
- Lifetime, No. cycles: hydrazine > LMP-103S
- Development time: hydrazine < LMP-103S
- Handling difficulties: hydrazine > LMP-103S
- Risk of concept failure: LMP-103S >> hydrazine

Blowdown vs pressure regulated

- Performance (optimization and stability): blowdown < pressure regulated
- Weight and volume benefits: blowdown > pressure regulated
- Recurrent cost: blowdown < pressure regulated


CS BB25: Trade-off (2/2)

AT-1k cluster vs AT-3k (CASE #2)

- Performance: 3 kW single thruster > cluster of 1 kW thrusters
- Thruster unit mass: cluster ≈ 1.8 x 3kW single thruster
- Recurrent cost: 3 kW single thruster < cluster of 1 kW thrusters
- Target reliability: cluster of 1 kW thrusters > 3kW single thruster

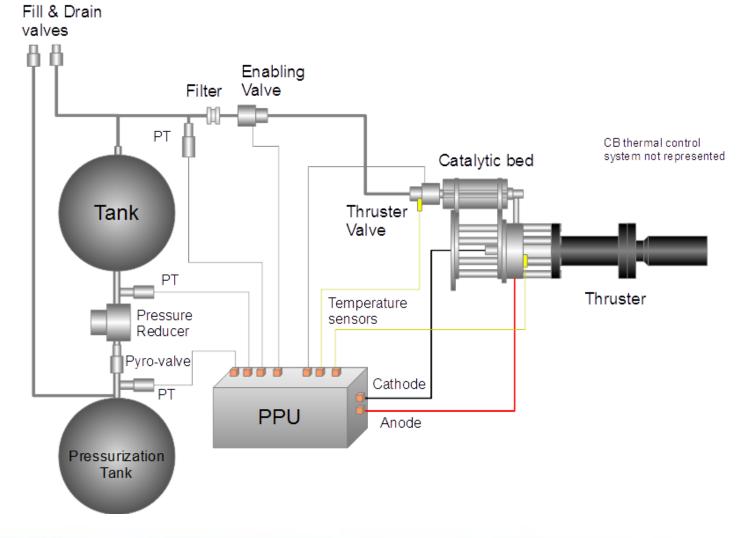
Catalytic bed integration in the thruster body

- Heavy design modifications due to the interaction between the thruster hot part and the catalytic bed components (catalyst and heater)
- Risk of concept failure during the development phase

CS BB25: Results

CASE#1 – 800 kg platform

- AT-1k thruster as baseline
- Propellant: hydrazine
- Pressure regulated system
 - <u>Blowdown</u> option could be considered in case of more stringent requirements on mass and envelope
- Non-integrated catalytic bed

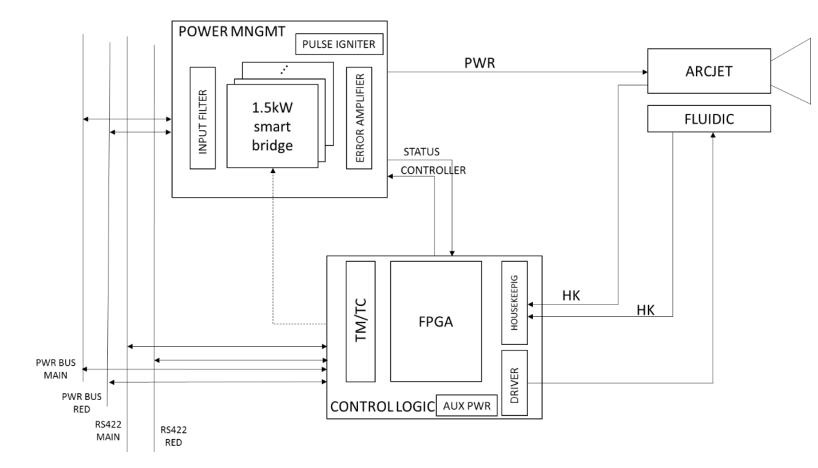

CASE#2 – 1500 kg platform

- **AT-3k** thruster (scaled version of AT-1k) as baseline
- Propellant: hydrazine
- Pressure regulated system
- Non-integrated catalytic bed

CS BB25: APS Configuration

The APS is composed by:

- Arcjet Thruster Unit (TU): thruster, gas generator and the thruster valve.
- Feeding system: sensors (pressure and temperature), valves, filters and pressure regulator or pressurization system.
- Power Processing & Control Unit (PPU): control board, power modules and ignition circuitry.



CS BB25: PPU General Architecture

PPU main characteristics:

- Modular power units, based on the evolution of the 1.5kW smart bridge module developed for HETs
- Dedicated **ignition board** with active impedance
 adapter
- Dedicated **Power Control Unit** based on FPGA architecture
- Full redundant high reliable architecture

Mass and power budgets for both **1kW** and **3kW** systems have been estimated considering representative **COTS** components.

	CASE #1	CASE #2
Thruster Unit ^[1]	1.1 kg	2 kg
PPU ^[2]	6 - 8 kg	9 - 10 kg
Feeding system [3]	1.4 kg	1.4 kg
Harnesses	1.6 kg	2.4 kg
Total mass	10.1 - 12.1 kg	14.8 – 15.8 kg

	CASE #1	CASE #2
Thruster Unit	1020 W	3020 W
PPU	73 W	179 W
Feeding system	25 W	25 W
Total power consumption	1118 W	3224 W

^[1] Including AT-1k, gas generator and valve
 ^[2] According to the PPU internal redundancy level
 ^[3] Without tank and pressurization system

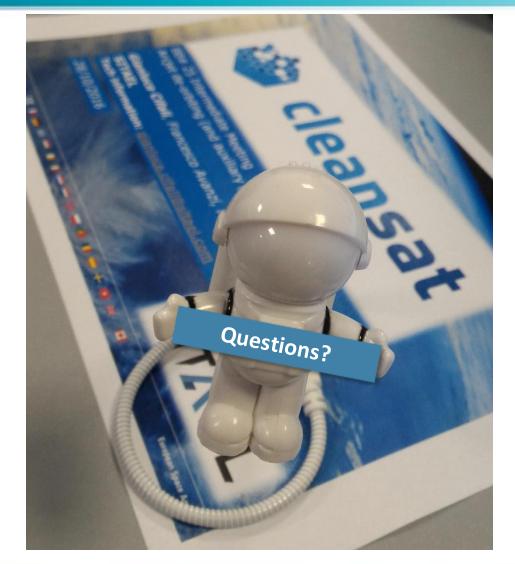
Model philosophy:

- **TU**: 2 EQM, 1 PFM
- **PPU**: 1 BBM, 2 EQM, 1 PFM
- Feeding system: 2 EQM, 1 PFM

Test philosophy:

- Validation test on BBM, EQM
- Coupling test on EQM
- Acceptance test on PFM

	AT-1k Hydrazine	AT-1k LMP-103S
КОМ	ТО	ТО
SSR	T0+4	T0+4
PDR	T0+8	T0+16
EQM TRR	T0+12	T0+20
ΔΡDR	T0+27	T0+37
CDR	T0+30	T0+39
PFM MRR	T0+34	T0+43
Acceptance Review	T0+40	T0+49


The overall schedule for LMP-103s is longer with respect to hydrazine due to the development time needed for the gas generator and the compatibility tests with materials.

- SITAEL AT-1k arcjet has been developed and characterized with different propellants in the last five years
- In the frame of CS BB25 study, the Arcjet based Propulsion Subsystem (APS) has been designed and the main APS performance has been assessed
- According to the LSI requirements, the SITAEL proposed APS is suitable for application on medium platform for both nominal and end-of-life maneuvers

Thanks for your attention

