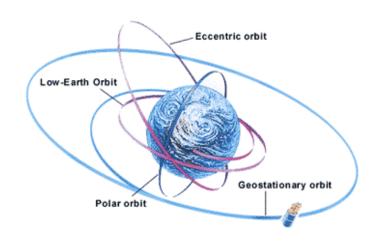


Congestion-Tipping Model for Earth Orbits

Jahnavi Ghelani


15/06/2017

Agenda

- Earth orbits as limited, natural resources
 - Definition
 - Cause-problem-symptom relationship
- Determining factors for congestion
- Debris classes
- The Congestion-Tipping Model
 - Model specifications
 - Model equation
 - Results
- Prospects for Future Studies

Determining factors for congestion

ESA UNCLASSIFIED - For Official Use

European Space Agency

What makes an operator re-consider operations in an orbit?

- Operational overheads - Negligible
 - Cost of Ground-Station (GS) services
 - Assembling a critical team for conjunction analysis
- Negligible On-board capacity
 - Quantity of fuel on-board
 - Capacity of thrusters on-board
- Service interruptions - Not disapproved

Jahnavi Ghelani | 15/06/2170 | Slide 10

3 classes of debris

European Space Agency

Table 2: Space debris classes and risk mitigation strategy

Debris class	Risk mitigation strategy $$
${\bf Detectable\ debris\ (catalogued+observable)}$	CAMs
Undetectable debris (larger than 1 cm)	Blindspot
Undetectable debris $(1 \text{ cm and smaller})$	Shielding

ESA UNCLASSIFIED - For Official Use

Jahnavi Ghelani | 15/06/2170 | Slide 11

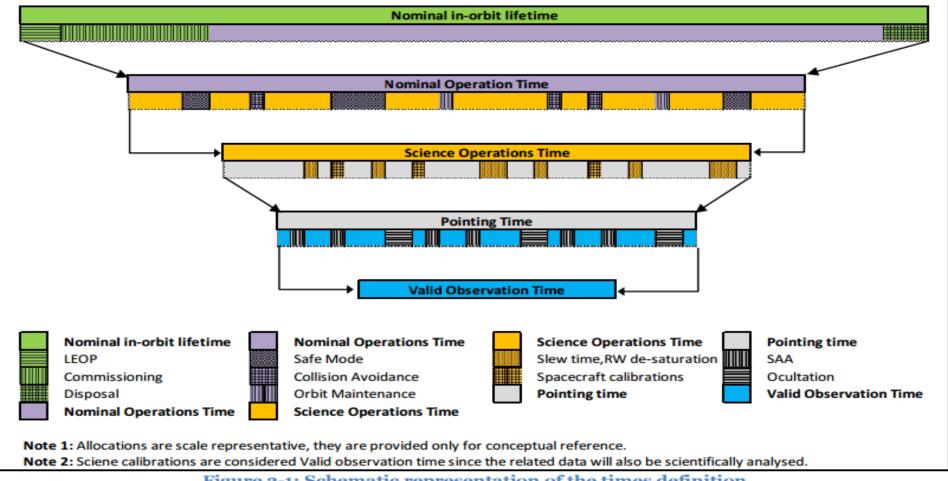


Figure 2-1: Schematic representation of the times definition

Modelling for Service Interruption

Detectable debris population

Mission downtime allowed \times 1 Julian year = no. of CAMs(year) \times CAM duration R.H.S. > L.H.S.

Undetectable debris population

 $ACP_w - ACP_d = Remaining probability$

Remaining probability = Acceptable collision probability margin

 $R.H.S. > L.H.S. \rightarrow Beginning of the$ congestion-tipping point

*ACP – Average Collision Probability

Case Specifications

Earth orbit: Sun Synchronous Orbit (SSO)

450 – 1000 km belt Region:

261 (excl. classified missions) * Number of active satellites:

Scenario: **Business As Usual (BAU)**

Criteria for terminating operations: Service interruption resulting from CAMs

Note: only looking at *catastrophic collisions* (i.e., energy-to-mass ration > 40 J/g)

^{*} Source: DISCOS, UCS, SpaceTrack

Main assumptions

Detectable debris

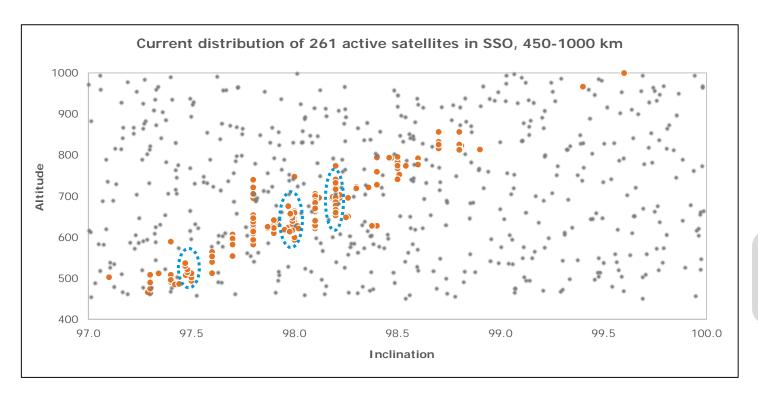
CAM duration: 3 hours

Mission downtime allowed: 1% of nominal operation time solely for CAMs

Undetectable debris

Accepted Collision Probability Margin

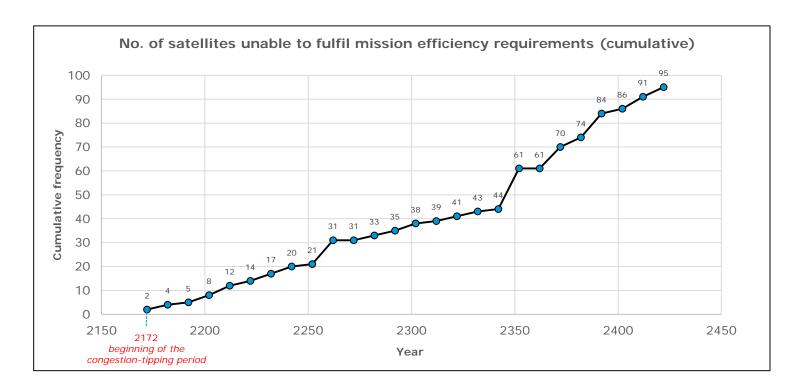
Jahnavi Ghelani | 15/06/2170 | Slide 17 ESA UNCLASSIFIED - For Official Use



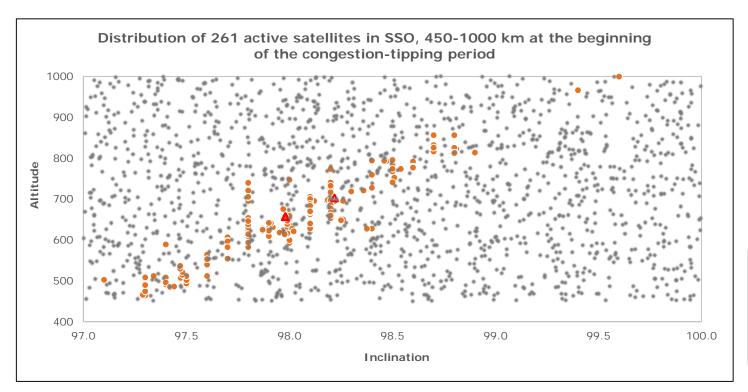
Population Density in SSO, 450-1000 km belt, in 2017

- Modelled satellites
- ◆ All other objects (space debris + classified missions)

Jahnavi Ghelani | 15/06/2170 | Slide 19



The congestion-tipping period for SSO begins in the year 2172



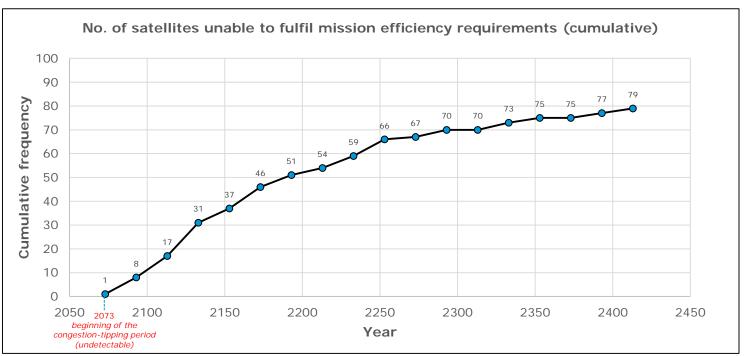
ESA UNCLASSIFIED - For Official Use

Jahnavi Ghelani | 15/06/2170 | Slide 20

Population Density in SSO, 450-1000 km belt, in 2172

- Modelled satellites
- ◆ All other objects (space debris + classified missions)
- ▲ First regions to experience the congestion-tipping point

Jahnavi Ghelani | 15/06/2170 | Slide 21



ESA UNCLASSIFIED - For Official Use

The risk posed by undetectable debris could bring the congestion-tipping period ~100 years sooner

European Space Agency

ESA UNCLASSIFIED - For Official Use

Jahnavi Ghelani | 15/06/2170 | Slide 22

Prospects for Future Studies

- Objects < 1 cm
- Combined effect of all 3 debris classes
- Other scenarios Partial & Full mitigation
- Megaconstellations

ESA UNCLASSIFIED - For Official Use

- Other factors of congestion, say, on-board propellant
- Complimentary study on the valuation of Earth orbits

Jahnavi Ghelani | 15/06/2170 | Slide 33

The Congestion-Tipping Model

Table 2: Space debris classes and risk mitigation strategy

Debris class	Risk mitigation strategy
${\it Detectable \ debris \ (catalogued + observable)}$	CAMs
Undetectable debris (larger than 1 cm)	Blindspot
Undetectable debris $(1 \text{ cm and smaller})$	Shielding

ESA UNCLASSIFIED - For Official Use

Jahnavi Ghelani | 15/06/2170 | Slide 34

= 11

