

Final Pre-flight Update for the RemoveDebris ADR Mission

Dr Jason Forshaw, PhD CEng Surrey Space Centre j.forshaw@surrey.ac.uk

Clean Space Industrial Days, ESTEC, ESA, Netherlands

12:30 e.DeOrbit Track, High Bay

24th October 2017

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 607099

Prof Guglielmo Aglietti Surrey Space Centre, UK

AIRBUS

Bremen Dr Ingo Retat

Stevenage Mr Alexander Hall

Toulouse Mr Thomas Chabot

Mr Aurelien Pisseloup

Mr Thierry Salmon

Dr François Chaumette

Mr Daniel Tye

Mr Cesar Bernal

:: CSeM

Mr Alexandre Pollini

UNIVERSITEIT STELLENBOSCH UNIVERSITY

Prof W H Steyn

- Mission Introduction, Video and Pre-flight Configuration
- Mission Launch Overview
- Operational Timelines
 - High Level Mission Timing
 - Net Demonstration
 - **Conclusion and Publications**

Spacecraft Build An

Introduction

Project Specification

- A European Commission FP7 project, €15.2 million¹
- 9 Partners, over 60 staff
- Project duration: 4 5 years
 Start: Oct 2013
 Launch: Jan Feb 2018

Technologies and Payloads

- Capture technologies with a net and harpoon
- De-orbiting technologies with a drag augmentation sail
- Proximity rendezvous operation technologies with vision-based navigation and LiDAR

Mission Concept

One chaser (main platform) which holds the payloads. Two targets (CubeSats) which are ejected as "artificial debris" to test the technologies

Novelty

A Low cost ADR mission to demonstrate, de-risk and mature key ADR in-orbit technologies

Configuration – Platform – I

Credit: SSTL, 2017

* HTA and VBN mass dummies

Configuration – Platform – II

Credit: SSTL, 2017

Configuration – CubeSats

DS-1 and DS-2

• Final CubeSat FMs inserted into deployer FMs and inserted on to platform.

DS-1 (FM)

DS-1 (Final SEET Deployment)

DS-2 (FM)

Configuration – Net, Harpoon

Net and Harpoon

- Harpoon FM underwent a final firing test and final deployment test.
- The HTA (Harpoon Target Assembly) consists of the FM structure (includes deployable boom, target, processing board, 2 x frangibolts) and FM Harpoon.

HTA (Deployment Test)

HTA (FM)

Configuration –VBN, Dragsail

VBN

FM completed with full SEET (data transfer and download).

Dragsail

• FM completed, integration into platform complete.

VBN (FM)

RemoveDEBRIS

Launch Sequence – I

Launch Specification

- Launch agent:
- Launching to:
- Supply vehicle:
- Launch pad:
- Date:
- Orbital details:
- Satellite mass:

NanoRacks (US)

- International Space Station (ISS)
 - SpaceX Falcon 9 & Dragon capsule
 - Space Launch Complex 40, Cape Canaveral Air Force Station
 - Q1 2018
 - ~380 km orbit, 51.6 degrees inclination
 - ~100 kg

Launch Sequence – II

Launch Process

- 1. Platform is packaged into a crew or cargo transfer bag (CTB) within a "clam shell" which protects it.
- 2. After the bag is launched to the ISS, the bag is unpacked by astronauts and both clam shell and protective side panels are removed.
- 3. Astronauts install the platform on to the Japanese experiment module (JEM) air lock. The air lock then depresses and the slide table extends.
- 4. The platform is grappled by the JRMS, a robotic arm system.
- 5. The robotic arm positions and releases the platform into space, where commissioning and main operations of the mission can commence.

High Level Mission Timing

Time in Months

Net Demonstration Sequence

RemoveDEBRIS

Conclusions – I

Progress

- Presentation (and corresponding paper) has examined the final mission configuration, the mission timing and payload demonstration sequences as part of the operations planning.
- Early next year mission to launch.

Novelty

A low cost mission to demonstrate, de-risk and mature key ADR in-orbit technologies, aiming to be:

- One of the world's first Active Debris Removal in-orbit demonstration missions.
- The first use of a harpoon or net in space for debris capture.
- The first 100 kg satellite to be launched from the ISS.
- The first use of CubeSats as "artificial debris".

Conclusions – II

Publications (last 2 years)

- Forshaw, J. L., Aglietti, G., Salmon, T., Retat, I., Hall, A., Chabot, T., Pisseloup, A., Tye, D., Bernal, C., Chaumette, F., Pollini, A. and Steyn, W. H. (2017), "The RemoveDebris ADR Mission: Launch from the ISS, Operations and Experimental Timelines", 68th IAC, Adelaide, Australia.
- Forshaw, J. L., Aglietti, G., Salmon, T., Retat, I., Roe, M., Burgess, C., Chabot, T., Pisseloup, A., Phipps, A., Bernal, C., Chaumette, F., Pollini, A. and Steyn, W. H. (2017), "Review of Final Payload Test Results for the RemoveDebris Active Debris Removal Mission", Acta Astronautica, doi:10.1016/j.actaastro.2017.06.003.
- Forshaw, J. L., Aglietti, G. S., Salmon, T., Retat, I., Burgess, C., Chabot, T., Pisseloup, A., Phipps, A., Bernal, C., Chaumette, F., Pollini, A. and Steyn, W. H (2017), "The RemoveDebris ADR Mission: Preparing for an International Space Station Launch", *7th European Conference on Space Debris*, ESA ESOC, Germany.
- Massimiani, C., Forshaw, J. L., Aglietti, G. (2016), "CubeSats as Artificial Debris Targets for Active Debris Removal Missions", Final Stardust Conference, ESA ESTEC, Nordwijk, Netherlands.
- Forshaw, J. L. (2016), "The RemoveDebris ADR Mission: Overview of CubeSat "Artificial Debris" Targets", CNES 4th European Workshop on Space Debris Modeling and Remediation, Paris, France.
- Forshaw, J. L. (2016), "RemoveDEBRIS: An EU Low Cost Demonstration Mission to Test ADR Technologies", ESA Clean Space Industrial Days, ESA ESTEC, Nordwijk, Netherlands

Questions?

RemoveDEBRIS

Credit: SSTL AIT Hall, LinkedIn, 2017