WE CAN DO SO MUCH TOGETHER

Can citric acid be used as an environmentally friendly alternative to nitric acid passivation for steel? An experimental and Life Cycle Assessment (LCA) study.

Usoa Izagirre (TECNALIA) / Christopher Zimdars (QUANTIS)

clean space industrial days

25 October 2017 ESTEC

"Citric Acid as a Green Replacement for Steels Passivation"

ESA CONTRACT 4000113179/14/NL/KML with TECNALIA Research & Innovation (Subcontractor: QUANTIS) 2015-2017

Stainless steels are major manufacturing materials used in spacecraft and ground support structures on applications requiring corrosion resistance:

- Containers and handling equipment of liquids and waste
- Components of propulsions systems
- Components within thermal protection systems
- Fasteners such as high strength bolts etc.

Before they are put to use stainless steel parts must first be '**passivated**':

- 1) To remove free iron contamination left on the surface from machining and fabrication that can result in corrosion damage
- 2) Forming a stable oxide film that protects the stainless steel from corrosion.

- **Nitric acid** is currently the most widely used passivating solution widely adopted in industrial applications.
- However, nitric acid has multiple environmental, safety, and process disadvantages.
 - Nitrogen oxides (NOx) are considered greenhouse gases and are volatile organic compounds (VOCs) that contribute to smog
 - NOx increase nitrogen concentration (leading to oxygen depletion) in water bodies
 - Poses worker health and safety issues.
 - Can remove beneficial heavy metals that give stainless steel its desirable properties
 - Nitric acid requires significant handling and disposal costs of hazardous materials.

clean space industrial days

Background and objectives

- **Citric acid** passivation has been recently proposed as a **green replacement** for stainless steels passivation processes in different industrial sectors, including fasteners, medical devices, automotive and aerospace.
- Citric acid is biodegradable, it is not considered a hazardous waste, it does not create toxic fumes during the passivation process and it does not remove beneficial heavy metals from the surface.

The **objective** of the project is to evaluate the suitability of the citric acid process for replacing the nitric acid-sodium dichromate baths to passivate stainless steels used for manufacturing spacecraft and ground support structures.

clean space industrial days

Work logic

- 1) Identify and procure materials (9 materials)
- 2) Identify SoA passivation processes and related standards
- 3) Identify testing methods
- 4) Verify the nitric acid passivation process by conducting two most commonly applied passivation treatments per material
- 5) Optimise the citric acid passivation process by studying different parameters (citric acid concentration, temperature and time) by means of a DoE study;
- 6) Extensive Test campaign (nitric acid and citric acid treated specimens)
- 7) Life Cycle Assessment (LCA) of nitric acid and citric acid passivation processes
- 8) Recommendations to exploit citric acid passivation

Selected materials

Alloy	Туре						
AISI 304L	300 series Austenitic						
AISI 316L	300 series Austenitic						
AISI 321	300 series Austenitic						
A 286	Prec. hardenable						
PH 17-4	Prec. hardenable						
PH 15-5	Prec. hardenable						
PH 13-8	Prec. hardenable						
AISI 440C	400 series Martensitic						
CRONIDUR ® 30	Martensitic						

Passivation and testing procedure

- 9 different materials
- Flat rectangular specimens 75x50x2 mm
- Apply passivation procedure (next slide)
- Blank specimens without passivation
- Response: 1) Salt spray test (x3) and 2) Ferroxyl test (x3)

VERIFICATION and OPTIMISATION campaign

- ✓ Around 200 nitric acid passivated specimens
- ✓ Around 600 citric acid passivated specimens

clean space industrial days

Passivation procedure

Salt Spray test (ASTM B117)

- Passivation effectiveness assessment as per ASTM A967 and AMS2700C
- 48 hours of exposure (2 hours are required as minimum in the ASTM A967/A967M-13 standard)
- 2 hours of exposure for AISI 440C and Cronidur30 (very sensitive to corrosion)
- The rust or staining after completion of the test shall be attributable to the presence of free iron particles embedded on the surface (insufficient passivation)

Salt Spray test (ASTM B117)

- The amount of rust or staining produced on the surface of the specimens (% of corroded area) was quantified using Image analysis software
- In principle, at least for the austenitic steels, it was expected that the nitric acid passivated specimens should not exhibit any rust or staining attributable to the presence of free iron particles
- Blank unpassivated specimens should give a positive response of a minimum of 50 % of stained surface

and apply grey scale

2) Calibration of colour

4) Apply thresold (magenta) and sum-up thresold area

Ferroxyl test

- Passivation effectiveness assessment as per ASTM A967 and AMS2700C (not recommended for martensitic grades)
- The Ferroxyl test solution was swabbed on the surface of each of the test specimens.
 The formation of a dark blue colour within 30 s denotes the presence of metallic iron.
- The blue staining after completion of the test shall be attributable to the presence of free iron particles embedded on the surface (insufficient passivation)

Ferroxyl test

- The dark blue staining produced on the surface of the specimens was quantified (after 1-3 days of testing) using a coloration grade scale to get a grade (from 0 to 8) of the surface that has been stained
- In principle, at least for the austenitic steels, it was expected that the nitric acid passivated specimens should not exhibit any blue staining attributable to the presence of free iron particles
- Blank unpassivated specimens should give a positive response of a minimum score of 7

Nitric acid passivation verification test matrix

Austenitic grades (AISI 304L, AISI 316L, AISI 321) Treatment [HNO3] T time Selection logic 1) 35% vol HNO3 67%wt 25°C 45 min Compliant with method Nitric 2 (ASTM A 967), with method F (ASTM-380) and with method Nitric 6 (AMS 2700C).							
Treatment [HNO3] T time Selection logic 1) 35% vol HNO3 67%wt 25°C 45 min Compliant with method Nitric 2 (ASTM A 967), with method (ASTM-380) and with method Nitric 6 (AMS 2700C).							
1)	35% vol HNO ₃ 67%wt	T AISI 304L, AISI 316L, AISI T time HNO ₃ 67%wt 25° C 45 m HNO ₃ 67%wt 55° C 30 m	45 min	Compliant with method Nitric 2 (ASTM A 967), with method F (ASTM-380) and with method Nitric 6 (AMS 2700C).			
2)	25% vol HNO ₃ 67%wt	55ºC	30 min	Compliant with method Nitric 3 (ASTM A 967), with method F (ASTM A380) and with method Nitric 7 (AMS 2700C).			

PH and ma (A286, 15-5	rtensitic grades PH, 17-4 PH, 13-8 PH, A	ISI 4400	Cand C3	0)
Treatment	[HNO3]	Т	time	Selection logic
1)	50% vol HNO3 67%wt	50ºC	30 min	Compliant with method Nitric 4 (ASTM A 967), with method H (ASTM A380) and with method Nitric 8 (AMS 2700C).
2)	25% vol HNO3 67%wt + 2.5%wt sodium dichrom.	50ºC	30 min	Compliant with method Nitric 1 (ASTM A 967), with method I (ASTM A380) and with method Nitric 2 (AMS 2700C).
3)	50% vol HNO3 67% wt	50ºC	60 min	Slightly forcing time. Compliant with method Nitric 4 (ASTM A 967).
4)	50% vol HNO3 67% wt	64ºC	30 min	Slightly forcing temperature. Out of standards.

Response	Units
Salt Spray Test: Determination of the total corroded area (%) after the test	% corroded area
Ferroxyl Test: Determination of the coloration grade	Coloration grade
(specific grade in a scale from 0 to 8) after the test	(from 0 to 8)

Summary of results for nitric acid passivation

Austenitic grades:

- Best treatments operated at lower concentration, higher temperature and lower processing time conditions, i.e. [25% vol HNO₃ c.@55^oC@30 min]
- The salt spray corrosion response was in all cases lower than 1% of corroded area
- Ferroxyl response was as low as 1 (in the scale going from 0 to 8)
- PH grades:
 - Treatment #3 [50% vol. HNO₃ c.@50°C@60 min] was selected as the best one to nitric acid passivate 15-5 PH, 17-4 PH and 13-8 PH grades
 - The salt spray corrosion response was in both cases lower than 3% of corroded area and Ferroxyl response was between 5 and 6
 - Treatment #4 [50% vol. HNO3 c.@64ºC@30 min] was selected as the best one for A286

Martensitic grades:

- Treatment #4 [50% vol. HNO3 c.@64°C@30 min] gave the best results in Salt Spray test (20,37% corroded area) for AISI 440C
- Treatment #1 [50% vol. HNO3 c.@50°C@30 min] gave the best results in Salt Spray test (8,63% corroded area) for Cronidur®30

Nitric acid passivation selected optimum parameters

Material	Treatment #	[Nitric citric] *	Temp. (ºC)	Time (min)	Salt Spray (%)*	Ferroxyl Grade (0 to 8)*
AISI 304L	2	25% vol HNO $_3$ c.	55ºC	30 min	0,37%	1
AISI 316L	2	25% vol HNO $_3$ c.	55ºC	30 min	0,82%	1
AISI 321	2	25% vol HNO $_3$ c.	55ºC	30 min	0,82%	1
15-5 PH	3	50% vol HNO $_3$ c.	50ºC	60 min	2,80%	5,67
17-4 PH	3	50% vol HNO $_3$ c.	50ºC	60 min	1,03%	5,33
13-8 PH	3	50% vol HNO $_3$ c.	50ºC	60 min	0,03%	-
AISI A286	4	50% vol HNO $_3$ c.	64ºC	30 min	1,20%	3,16
AISI 440C	4	50% vol HNO3 c.	64ºC	30 min	20,37%	-
C®30	1	50% vol HNO $_3$ c.	50ºC	30 min	8,63%	-

Results for nitric acid passivation. Some examples.

AISI 304L

SALT SPRAY 48h (Photo after test and image analysis)

HNO3 c. 35% vol.@25°C@45'

HNO3 c. 25% vol.@55°C@30'

FERROXYL (Photo after 1 hour of testing)

BLANK

HNO3 c. 35% vol.@25°C@45

HNO3 c. 25% vol.@55°C@30'

17

Results for nitric acid passivation. Some examples.

15-5 PH

SALT SPRAY 48h (Photo after test and image analysis)

BLANK

Avg. 99,28%

HNO3 c. 55% vol.@50°C@30' (#1)

Avg. 39,46%

HNO3 c. 25% vol.+2,5% wt. Na dichromate @55°C@30' (#2)

Avg. 98.15%

HNO3 c. 55% vol.@50°C@60' (#3) HNO3 c. 55% vol.@50°C@30' (#3Rep) HNO3 c. 55% vol.@64°C@30' (4#)

Avg. 32.07%

Avg. 2.80%

Results for nitric acid passivation. Some examples.

CRONIDUR®30

SALT SPRAY 48h (Photo after test and image analysis)

HNO3 c. 55% vol.@50°C@30' (#1)

HNO3 c. 55% vol.@50°C@60' (#3)

SALT SPRAY 48h (Photo after test and image analysis)

HNO3 c. 55% vol.@50°C@60' (#3) HNO3 c. 55% vol.@64°C@30' (#4)

Citric acid passivation optimisation test matrix

2³ factorial DoE + estimation of the variances at the central point

Austenitic grades (A	ISI 304L, AISI 31	6L, AISI 321)
Factors Citric acid concentration	Lower limit	Upper limit
Citric acid concentration	4 wt %	10 wt %
Temperature	25ºC	85ºC
Treatment time	15 min	150 min

PH and martensitic grades (A286, 15-5 PH, 17-4 PH, 13-8 PH, AISI 440C and C30)FactorsLower limitUpper limitFactorsLower limitUpper limitCitric acid concentration4% wt10% wtTemperature25°C85°C				
Factors	Lower limit	Upper limit		
Citric acid concentration	4% wt	10% wt		
Temperature	25ºC	85ºC		
Treatment time	15 min	90 min		

Response	Units
Salt Spray Test: Determination of the total corroded area (%) after the test	% corroded area
Ferroxyl Test: Determination of the coloration grade (specific grade in a scale from 0 to 8) after the test	Coloration grade (from 0 to 8)

- Analyzes multiple test parameters simultaneously
- Exposes interactions between variables
- Delivers optimized combination of variables

Example

316L

Citric acid passivation optimisation test matrix

2^3 factorial DoE + estimation of the variances at the central point

	Des	ign factors		Responses							
Run #	Citric Acid	Bath	Time SST corroded area (%) Ferroxyl grade (grade (() to 8)	
	conc. (%)	Temp. (ºC)	(min)	CNS1	CNS2	CNS3	Average	F-1	F-2	F-3	Averag
1	10	25	15	18,02	18,86	0,24	6,37	5	6	5	5,33
2	10	85	15	0	0	0	0,00	1	1	1	1
3	4	85	15	0	0	0	0,00	1	1	1	1
4	7	55	82,5	0	0	0	0,00	1	0,5	1	0,83
5	10	25	150	0,04	0,01	0,02	0,01	0,5	1	1,5	1
6	4	25	150	0,08	0,06	0,02	0,03	1	1,5	1,5	1,33
7	4	25	15	1,11	17,0	0,32	5,77	4	3,5	3	3,5
8	10	85	150	0	0	0	0,00	0,3	0,3	0,3	0,3
9	7	55	82,5	0	0,01	0,02	0,01	1	1	0,75	0,91
10	4	85	150	0	0	0	0,00	0,3	0,3	0,3	0,3
11	7	55	82,5	0	0	0	0,00	1	1,5	1	1,33
				Estimated Bespor							

Citric acid passivation DoE models and optimum process parameters

MaterialAISI 304LDoes n experi corrodAISI 304LDoes n experi corrodAISI 316LSST cc TempeAISI 321Does n experi corrod15-5 PHSST cc acid cc 0,32 -17-4 PHSST cc acid cc 0,32 -13-8 PHAISI A286AISI A286SST cc empeAISI 440CSST cc rempeAISI 440CSST cc rempe		Optimised p	process para	ameters	Predicted	Actual value
	(SST Corroded area %)	Citric acid (wt%) Temp(ºC)		Time (min)	(SST Corroded area %)	Corroded area %)
AISI 304L	Does not fit to a statistical model. All experimental runs achieved the target 0% corroded area.	4%	85ºC	15´	0%	0%
AISI 316L	SST _{corroded area} (%) = $0,419 - 0,005 \cdot Bath$ Temperature - $0,003 \cdot time + 0,00003 \cdot (Bath temperature x time)$	4%	85ºC	150´	-0.02±0.05%	0%
AISI 321	Does not fit to a statistical model. All experimental runs achieved the target 0% corroded area.	4%	85ºC	150´	0%	0%
15-5 PH	SST _{corroded area} (%) = 176,79 - 3,47 \cdot Citric acid concentration – 3,37 \cdot Bath temperature - 0,32 \cdot time + 0,02 \cdot (Bath temperature) ²	7%	85ºC	90´	-1.78±13.78%	0,33%
17-4 PH	SST _{corroded area} (%) = 38,10 – 0,005· (Bath temperature x time)	4%	85ºC	90´	-1.22±12.70%	0,66%
13-8 PH	-	7%	85ºC	90´	-	0,03%
AISI A286	SST _{corroded area} (%) = -0,24 + 0,25 · Bath temperature - 0,016 · (Citric Acid Concentration x Bath temperature) - 0,001 · (Bath temperature x time)	10%	85ºC	90´	-3.55±4.23%	0,33%
AISI 440C	SST _{corroded area} (%) = 114,89 - Bath Temperature – 1,91 · time + 0,018· (time) ²	4%	85ºC	60´	-18.53±4.53%	6,00%
C®30	SST _{corroded area} (%) = 13,16 - 0,38 \cdot time - 0,024 \cdot (Citric Acid Concentration x Bath Temperature) + 0,12 \cdot (Citric Acid Concentration) ² + 0,004 (time) ²	7%	85ºC	60´	-4.16±2.4%	0,77%

Citric acid passivation DoE models and optimum process parameters

		Optir p	nised pro arameter	Cess S	Predicted value	Actual value
Material	(Ferroxyl grade from 0 to 8)	Citric acid (wt%)	Temp (ºC)	Time (min)	(Ferroxyl grade from 0 to 8)	(Ferroxyl grade from 0 to 8)
AISI 304L	Ferroxyl grade = 2,701 + 0,330 · Citric Acid Concentration - 0,023 · time - 0,007 · (Citric Acid Concentration x Bath temperature) + 0,0003 · (Bath temperature x time)	4%	85ºC	15′	0.45±0.82	1,83
AISI 316L	Ferroxyl grade = 6,127 - 0,062 · Bath Temperature - 0,032 · time + 0,0003 · (Bath temperature x time)	4%	85ºC	150´	0.11±0.78	0,3
AISI 321	Ferroxyl grade = 4,785 - 0,035 · Bath Temperature - 0,01 · time	4%	85ºC	150´	0.22±0.65	0,83
15-5 PH	Ferroxyl Grade = 6,30 - 0,001 · (Bath temperature x time) + 0,0004 · (time) ²	7%	85ºC	90´	0.86±1.41	3,17
17-4 PH	Ferroxyl Grade = $10,68 - 0,008 \cdot x$ Bath temperature - $0.0004 \cdot (Bath temperature x time)$	4%	85ºC	90´	1.03 ± 1.2	1,66
13-8 PH	-	7%	85ºC	90´	-	-
AISI A286	Ferroxyl grade = 11,40 - 0,70 · Citric Acid Conc 0,02 · Bath temperature - 0,07 · time + 0,006 · (Citric Acid Concentration x time)	10%	85ºC	90´	1.91±0.71	1,83
AISI 440C	-	4%	85ºC	60´	-	-
CB30	-	7%	85ºC	60´	-	-

Results for citric acid passivation. Some examples.

AISI 304L

7%wt C.A.@55°C@82,5' (#4-Med) 10%v

10%wt C.A.@25°C@15' (#1-Worst)

FERROXYL (Photo after 1 hour of testing)

10%wt C.A.@85°C@150' (#8-Best)

7%wt C.A.@55°C@82,5' (#4-Med)

Results for citric acid passivation. Some examples.

15-5 PH

SALT SPRAY 48h (Photo after test and image analysis)

10%wt C.A.@85°C@90' (#5-Best) 7%wt C.A.@55°C@52,5' (#3-Med)

4%wt C.A.@25°C@15' (#9-Worst)

FERROXYL (Photo after 1 hour of testing)

10%wt C.A.@85°C@90' (#5-Best)

7%wt C.A.@55°C@52,5' (#3-Med)

4%wt C.A.@25°C@15' (#9-Worst)

clean space industrial days

Results for citric acid passivation. Some examples.

Cronidur[®] 30

SALT SPRAY 2h (Photo after test and image analysis)

10%wt C.A.@85°C@15' (#2-Best)

7%wt C.A.@55°C@52,5' (#9-Med)

10%wt C.A.@25°C@15' (#4-Worst)

Assessment of results and industrial conditions

- Salt spray and Ferroxyl responses were **better for citric acid passivation** than for citric acid passivation for all studied grades.
- However the optimised process conditions for citric acid passivation led in general to high temperatures and long processing times (i.e. 85°C @ 90-150 min depending on the material) since the objective was to minimise as much as possible the corrosion response.
- A further analysis of the citric acid passivation results was conducted trying to assess which parameters could be practically implemented at an industrial scale. To do so, a "realistic" temperature to work at industrial scale was arbitrarily defined at 60°C.
- The results showed that, promisingly, salt spray responses near to 0% corroded area or at least under ≤10% of corroded area were achievable for all the materials working at 60°C. Processing time could be also reduced in some of the materials keeping low corrosion responses.

Test Campaign

The necessary samples to be tested in the Characterisation Test Campaign were nitric acid and citric acid passivated applying the conditions selected as optimum for each material **TEST** campaign

✓ Around 1250 nitric and citric acid passivated specimens

MECHANICAL and MICROESTRUCTURAL CHARACTERIZATION Tensile testing Hardness and microhardness testing Microstructural characterisation Fatigue testing(R=0,1 and R=-1) Fatigue crack propagation (R=0,1 and R=1) CORROSION CHARACTERIZATION General corrosion testing. Athmospheric corrosion testing SCC testing Hydrogen embrittlement testing Electrochemical testing

CHEMICAL CHARACTERIZATION

XPS chemical compositon Hydrogen content

Test Campaign

	Standard	#material	Con dition	Р	NA	CA	W	NAW	CAW	No. s pecimens <i>i</i> ref	Samples total		
Chemical composition	XP S	9	2		1	1							
Hydrogen content		9	3	1	1	1				3	81		
Tensile testing	EN ISO 6892 1	6	6	1	ŝ	1	1	1	1	3 (* corresponde 2 e amplee)	102		
Tensile testing (Cronkiur, 440C, A286)	EN ISO 6892-1	3	3	1	1	1				3	97		
Hardnes s	ENISO 6506-1 ISO6508-1	6	հ	1	1	1	1	1	1	1	36		
Hardness (Cronidur, 440C, A286)	ENISO 6506-1. ISO6508-1	3	3	1	1	1				1	9		
Microhardness (no weided)	EN ISO 6507-1	9	2		1	1				1	18		
Microhardness (welded)	EN ISO 9015-1 & EN ISO 9015-2	9	2					1	1	1	18		
Microstructural characterisation	Internal procedure	6	6	1	1	1	1	1	1	1	36		
Micros tructural characterisation (Cronklur, 440C, A286)	Internal procedure	3	Э	1	1	1				1	9		
General corrosion testing (salt fog testing)	EN ISO 9227	9	6	1	1	1	1	1	1	2	108		
Atmospheric corrosion testing		9	6	1	1	1	1	1	1	2	108		
SCC testing (AISI304L, AISI316L, AISI321)	ECSS-Q-ST-70-37C	3	2					1	1	6	36		
SCC testing (PH15-5, PH17-4, PH13-8)	ECSS Q ST 70 37C	3	2					1	1	6	36		5
SCC testing (A286)	ECSS-Q-S1-70-37C	1	2		1	1				б	12		μ
SCC testing (Cronidur, 440C)	2023001 E05354035167/0437(0302000	2	2		1	1				6	21		
Hydrogen embrittlement	ASTMF519-13	6	Э			1		1	1	Э	60		
Hydrogen embrittlement (Cronidur, 440C, A286)	ASTME519-10	Э	Э	1	1	1				э	27		
Electrochemical	ASTM G61	6	6	1	1	1	1	1	1	1	36		
Electrochemical (cronidur, 440C, A286)	ASTM G61	3	3	1	1	1				1	9		
Fatigue testing (2 R values)	ASIM E466	6	3			1		1	1	12	432		
Fatigue tes ting (2 R values) (Cronidur, 440C, A286)	ASTM E466	1	3	٩	1	1				12	36	•	
Fatigue crack propagation (2 R values)	ASTM B47	6	3			1		1	1	2	72		
Fatigue crack propagation (2 R values) (cronidur, 440C, A266)	ASTM E647	3	3	1	1	1				2	36		
										Total:	1251		

Tests in progress

29

Test Campaign

	Standard	fim atorial	Condition	Ρ	NA	CA	W	NAM	CAW	No.specimens/ref	Samples total	
Chemical composition	XPS	9	2		1	1						
Hydrogen content		g	3	1	1	1				3	81	
Tensile testing	EN ISO 6892-1	6	6	1	×	1	1	1	1	3 (* corresponds 2 samples)	102	Overall Similar
Tensile testing (Cronidur, 440C, A286)	EN ISO 6892-1	З	З	1	1	1				3	27	Similar
Hardness	ENISO 6506-1. ISO6508-1	6	6	1	1	1	1	1	1	1	36	performance
Hardness (Croniciur, 440C, A286)	ENISO 6506-1. ISO6508-1	3	3	1	1	1				1	9	pituio vo cituio
Nicrohardness (no welded)	EN ISO 6507-1	9	2		1	1				1	18	nitric vs. citric
Microhardness (welded)	EN ISO 9015-1 & EN ISO 9015-2	9	2					1	1	1	18	acid
Microstructural characterisation	Internal procedure	6	6	1	1	1	1	1	1	1	36	
Microetructural characterisation (Cronidur, 440C, A286)	Internal procedure	3	3	1	1	1				1	9	
General corrosion testing (salt fog testing)	EN ISO 9227	y	б	1	1	1	1	1	1	2	108	
Atmospheric corrosion testing		9	6	1	1	1	1	1	1	2	108	
SCC testing (AISI304L, AISI316L, AISI321)	ECSS-Q-ST-70-37C	3	2					1	1	6	36	Citric acid
SCC testing (PH15-5, PH17-4, PH13-8)	ECSS-Q-ST-70-37C	Э	2					1	1	6	36	better than
SCC testing (A286)	EC85-Q-ST-70-37C	1	2		1	1				6	12	nitric acid
SCC testing (Cronidur, 440C)	ECSS-Q-ST-70-37C	2	2		1	1				6	24	
Hydrogen embrittlement	ASTM F619-13	6	Э			1		1	1	з	60	
Hydrogen embrittlement (Cronidur, 440C, A286)	ASTM F519-13	3	3	1	1	1				3	27	
Electrochemical	ASTMG61	6	6	1	1	1	1	1	1	1	36	
Electrochemical (cronidur, 440C, A286)	ASTM G61	Э	Э	1	1	1				1	9	
Fotigue testing (2 R values)	ASTM E466	6	3			1		1	1	12	432	
Fatigue testing (2 R values) (Cronidur, 440C, A286)	ASIM E466	1	З	1	1	1				12	36	
Fatigue crack propagation (2 R values)	ASTM E647	6	3			1		1	1	2	72	
Fatigue crack propagation (2 R values) (cronidur, 440C, A 286)	ASTM B347	3	3	1	1	1				2	36	
										Total:	1251	30

clean space industrial days

Results after 168 hours of SST testing

Nitric Acid pasivated

• 15-5

• 17-4

• 13-8

• C30

Citric Acid pasivated

Hydrogen embrittlement testing

Nitric acid passivated AISI 440C specimens failed the test while those citric acid passivated passed it.

Reference	7	7N	7C					
Spec. 1 (MPa)		1826						
Spec. 2(MPa)	1999							
Spec 3 (MPa)	1361							
NFS (MPa)	1728,7							
Stress applied (MPa)	1296,5							
Time (h)	200	1 and 3,4 h	200					
Result	No break	Breaks	No break					
Observation	No cracks		No cracks					

Overall conclusion

Citric acid passivation has proven to have same (or better) performances with respect to nitric acid passivation on the same steels.

Inputs for the LCA analysis

- Details of the passivation process conditions including all the sequences (pre-treatment, passivation and post-treatment) defined for each material
- Bath analysis (iron-build up) results
- Electricity consumption data (in kWh per m2 of treated material)
 - Passivated material quantity was normalised to 0,3m2 for all metals and treatments;
 - Industrial conditions (50°C-60°C) were considered both for nitric acid and citric acid passivation;

Thank you for your attention

For more information, please contact: Marta Brizuela/ <u>marta.brizuela@tecnalia.com</u> Usoa Izagirre/ <u>usoa.izagirre@tecnalia.com</u> Elena Silveira/ <u>elena.silveira@tecnalia.com</u>

Visit our blog: http://blogs.tecnalia.com/inspiring-blog/

www.tecnalia.com

Quantis

LIFE CYCLE ASSESSMENT (LCA) OF NITRIC AND CITRIC ACID PASSIVATION PROCESS

FINAL LCA RESULTS FOR AISI 304L, AISI 316L, 13-8 PH, 15-5 PH, 17-4 PH, A286, AISI 321, AISI 440 AND CRONIDUR-30 STAINLESS STEELS

CONDUCTED BY ANNA KOUNINA PRESENTED BY CHRISTOPHER ZIMDARS

clean space industrial days

25.10.2017

CONTEXT

Context and Scope of the LCA Study

- Nitric acid is currently the most widely used passivating solution. However, it has multiple environmental, safety, and process disadvantages
- Citric acid passivation has been recently proposed as a green replacement for stainless steels passivation processes due to several advantages:
 - Biodegradable and no hazardous waste
 - Does not create toxic fumes
 - Does not remove beneficial heavy metals from the surface

→ Which of the two passivation processes has the better environmental performance?

→ LCA is an appropriate tool to answer this question: It is an internationally recognized approach that evaluates the potential environmental and human health impact associated with products and services throughout their life

LCA METHOD & SYSTEM SCOPE

Life Cycle Design

Environmental Impacts grouped in 15 categories (according to ILCD method)

Life Cycle Stages of Stainless Steel

- **1**. Acid production
- 2. Steel production
- **3.** Corrosion resistance treatment process
- 4. Emissions from passivation
- 5. Use (negligible)
- 6. End-of-life of corrosion treatment inputs
- 7. End-of-life of steel

RESULTS

Impact on Climate Change of 9 steel types

Quantis

Impact of AISI 321 steel on 15 ILCD categories

Quantis

LIMITATIONS

Limitation of the conducted LCA study

- Passivation bath fumes
 - No data is available in the literature concerning the quantification of emissions associated with nitric acid passivation
 - Therefore, conservative assumptions and sensitivity analysis have been explored (from 0.1% to 10% of N emitted as HNO₃, NO, NO₂ and N₂O)
- Passivation bath end-of-life
 - No data is available on the nitric and citric acid end-of-life treatment, which is in fact a key environmental issue
 - Therefore, conservative assumptions have been explored (intensive pretreatment or incineration for nitric acid)
- Extrapolation to the full industrial scale
 - Results provided in this study rely mainly on lab scale inventory data, industrial scale would be more adequate
 - Therefore, extrapolations based on expert guesses have been explored (reuse of bath to passivate larger steel surfaces)

Key Findings

- Nitric acid passivation: in general lower electricity use during passivation
- Citric acid passivation:
 - Reduced emissions from passivation
 - Potentially lighter treatment at end-of-life
- Impact of citric and nitric acid production varies depending on the considered impact category
- On full industrial scale, mainly acid bath fumes are expected to generate a difference in environmental impacts
 - The reuse of the passivation bath to treat a larger amount of steel surface would reduce acid inputs, electricity and end-of-life treatment
- → Nitric acid would be expected to have a larger environmental footprint (to verify using industrial scale data)

KEY MESSAGE

At full industrial scale, citric acid passivation is expected to be generally preferable to nitric acid passivation due to fumes from the acid bath, if the electricity consumption and acid quantities of both treatments are reduced due to the reuse of the passivation bath

These results need to be confirmed with industrial scale data

Quantis

Thank you for your attention!

For any further Questions do not hesitate to contact us:

Anna Kounina, PhD Sustainability consultant Quantis Lausanne M. anna.kounina@quantis-intl.com T. +41 21 353 59 15 S. anna.kounina www.quantis-intl.com

Quantis