

Demise Observation Capsule (DOC) Development Status

Trevor Watts (S[&]T)

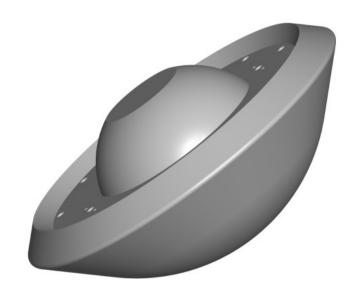
Stefan van der Linden (S[&]T)

25 October 2017

ESA Clean Space Days

Demise Observation Capsule

"Providing a clear perspective on stage re-entry"



What DOC records:

Images of upper stage

Measures break-up evolution

Key disintegration events

DOC-Parameters to be Recorded

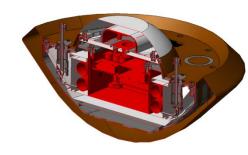
- Data on its own trajectory (acceleration, position, angular velocities, aerothermal data...).
- Data on entry parameters & thermo-mechanical of the Host Vehicle prior to its fragmentation (temperatures, vibrations & shocks).
- Detect the start of fragmentation and record as much as possible.
- Record data from after the fragmentation event (if possible).
- Record video/images of the Host Vehicle during its re-entry (if possible).

Notes:

- 1. the data recorded should relate to the Host Vehicle, whenever possible
- 2. Important events:
 - Altitude of main fragmentation/explosion
 - Ejection velocity due to main fragmentation/explosion

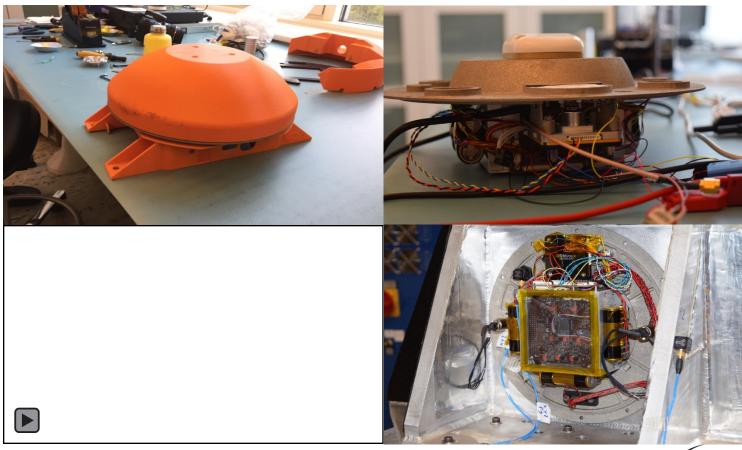
The Capsule

- Robust, optimized and modular design for a **multitude** of launch vehicles/stages: 3rd and 4th stage(s)
- **Rideshare** item: no impact on launcher payloads or operations
- **Safe & controlled** separation from the stage after its passivation
- On-board software design for autonomous mission performance & in-flight data transfer
- Flight-ready equipment: PFM + GSE:
 - Mass: **<10kg**
 - Diameter: ~350mm
- Miniaturized electronics and sensors
 - Versatile and extendable sensor suite
- Observation cameras on host vehicle and capsule
- IRIDIUM Modem Iridium 9523N
- **ITAR-free** equipment



The Capsule – Sensor Package

Instrument	Model	Delivers	Range
GPS	NovaTel OEM615	Time	
		Position	>7300 km ECEF
		Velocity	>8 km/s
IMU	ADIS16488	Acceleration	\pm 18 g
		Angular rate	>±480°/s
		Magnetometer	$> \pm 0.18 \text{mT}$
		Temperature	-40° C -
			+85° C
Camera	C1U NanoCam	Pressure	120 kPa
Thermocouples	Type K	Temperature	-200° C—
			1260° C
Accelerometers	ADXL375	High acceleration	$\pm 200 \mathrm{g}$
Pressure sensor	Kulite XTEL-190M	External Pressure	170 kPa
Pressure sensor	MKS 905	Internal Pressure	120 kPa

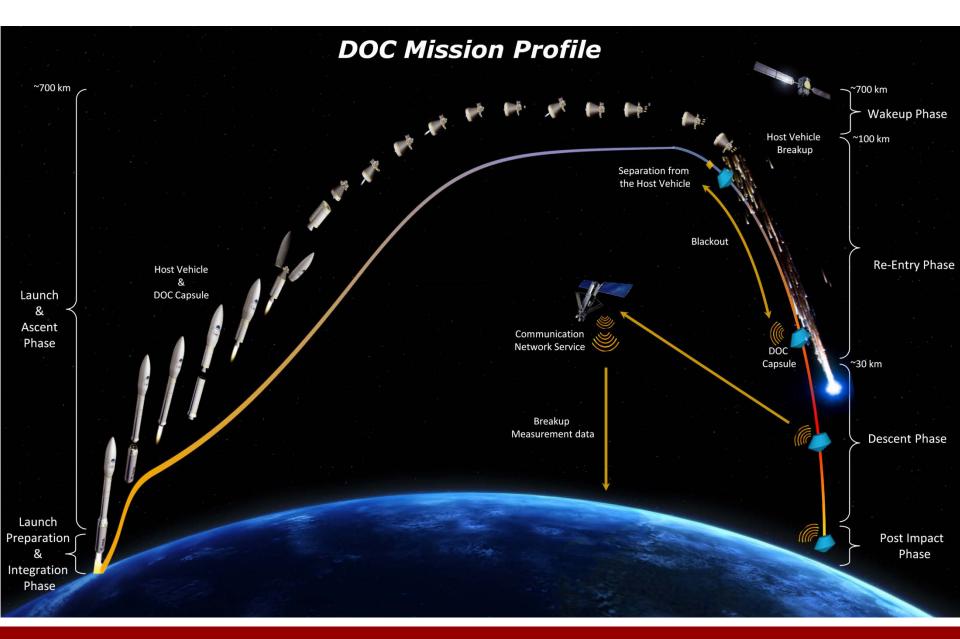


EQM Testing

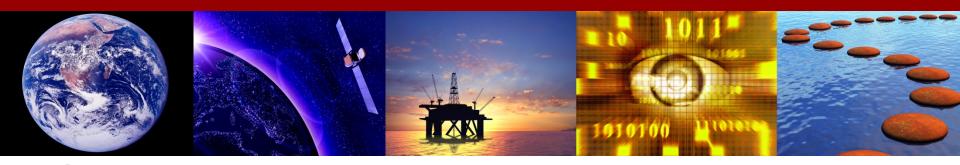
EQM (EBB) Test Campaign (GOMSpace & CIRA)

EQM Testing

Timeline & Consortium



The Mission



Demise Observation Capsule (DOC)

Trevor Watts & Stefan van der Linden(Science [&] Technology B.V.)

trevor.watts@stcorp.nl

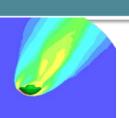
doc.st@stcorp.nl

Back-up Slides

Back-up Slides

Effect of DOC

Footprint

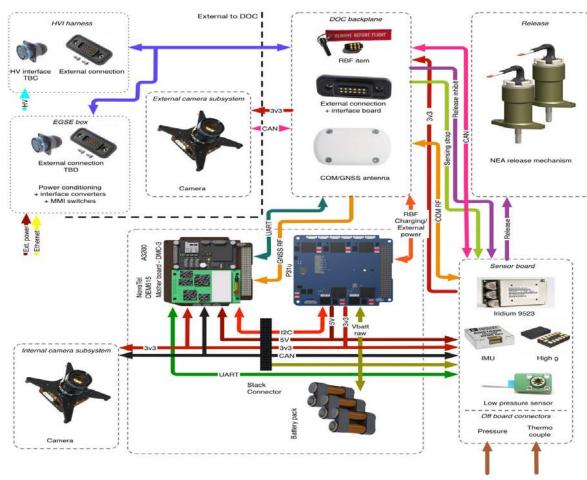

- Regulatory Compliance
- Reducing impact footprint
- Re-entry public safety

Trajectory

- Validation of re-entry models
- Understand re-entry physics
- Obtain data to 'design for demise'
- Structural, aero-thermodynamical and material databases

Breakup

- Document key disintegration events
- Stage, Payload and Instrument demise
- Complete health status



DOC Avionics

30C avionics

