The Horizon 2020 ReDSHIFT Project: 3D printing of demisable spacecraft

A. Rossi & the ReDSHIFT Team

IFAC-CNR, Sesto Fiorentino, Italy

Clean Space Industrial Days October 24-26 2017

D4D

THE REDSHIFT CONSORTIUM

REDSHIFT: MITIGATION FROM THE CRADLE TO THE GRAVE

- Simulations: Simulate the evolution of the current space environment with standard procedures and, later on, with the proposed advanced procedures.
- Astrodynamics: a "cartography" of the phase space in the Earth vicinity will be performed looking for de-orbiting highways (coupled with non-standard propulsion means) using modern celestial mechanics and astrodynamics tools.
- 3D-printing: produce and test prototypes of small spacecraft (or part of) with novel solutions (protection, design-for-demise,....) based on the theoretical findings.
- Legal framework: propose advances to the current mitigation guidelines on the basis of the results obtained.

MAXIMUM ECCENTRICITY MAPS

Initial orbits: $a = R_{\oplus} + 1560$ km, $\Omega = 90^{\circ}$, $\omega = 0^{\circ}$

 $C_{\rm P}(A/m) = 0.012 \, {\rm m}^2/{\rm kg}$

AREA AUGMENTATION DEVICES

The possibility to exploit area augmentation devices is explored, by integrating the orbits also objects with $A/m = 1 \text{ m}^2/\text{kg}$.

Images courtesy of LUX Space (All rights reserved)

MAXIMUM ECCENTRICITY MAPS

i vs e: MEM contour maps for epoch 2020

MAXIMUM ECCENTRICITY AND RESONANCES

e = 0.1, $\Omega = 0^\circ$, $\omega = 0^\circ$

Epoch 2018, $C_R(A/m) = 0.024 \text{ m}^2/\text{kg}$

Epoch 2020, $C_R(A/m) = 1 \text{ m}^2/\text{kg}$

RE-ENTRY ECCENTRICITIES (A/m) = $0.012 \text{ m}^2 / \text{kg}$, $\Omega = 180^\circ$, $\omega = 0^\circ$, Epoch: 2020

- 8U-cubesat
- ► 226.30 × 226.30 × 227.00 mm
- compatible with the Additive Manufacturing system at the University of Southampton.

Image by EDSS

Image courtesy of EDSS

3D PRINTING: REDSHIFT STRUCTURAL MODEL

- CAD model and manufacturing drawings completed by EDSS
- 3 different models with different number of components and materials
- A number of features will be tested on these models:
 - Shielding
 - Controlled Break Up
 - Design for Demise (D4D)
- Different tests will also be performed on them:
 - D4D, in heated wind tunnel at DLR, Germany;
 - Impact, with hypervelocity gas guns at CISAS, Italy;
 - Radiation tests at INFN, Italy.
 - Vibrational test at EDSS, Spain.

REDSHIFT: 3D PRINTING FOR SAIL

Square planar drag sail module with sail deployed (LuxSpace)

REDSHIFT: 3D PRINTING FOR SAIL

Sail container

 Attach assembly mechanisms on 3D printing plate

REDSHIFT: 3D PRINTING FOR SHIELDING

Multi-shock panel: structure panel comprising four equally-spaced aluminum bumper layers

- Material is Al alloy
- Thickness:
 0.25 ÷ 1.00 mm

REDSHIFT: 3D PRINTING FOR SHIELDING

Single corrugated panel: structure panel comprising outer bumper layers sandwiching a corrugated core bumper layer

- Material is Al alloy
- Thickness:
 0.25 ÷ 1.00 mm

REDSHIFT: D4D WORK

Theoretical analysis work being performed on a wide range of aspects:

- Synergies with re-entry highways
- Impact of drag sails on demise
- Propellant tanks fragmentation effects
- Reaction wheel demise analysis
- Assessment of sandwich panel demise
- Impact of 3D printing on demise

Complemented by dedicated test campaigns.

REDSHIFT: D4D WORK

Key test objects:

- Aluminum shear testing & Comparison with 3D printed material
- CFRP material shear testing and fibre bend/break testing
 - Sandwich panels demise testing
 - Comparison with 3D printed cores
 - Insert removal tests
 - Comparison with integrated 3D printed insert

INVENT material, CFRP M55J fibres with EX1515 cyanate ester resin

20mm aluminum honeycomb, CFRP facesheets as above

18/26

REDSHIFT: D4D - KEY TEST OBJECTS: CUBESAT

Complex Object Testing: CubeSat

- EnduroSat Structure, integration by EDSS
- DLR will replace the dummy cards with a range of electronics GFRP cards for the tests.

REDSHIFT: D4D - CUBESAT: DLR TUNNEL SETUP

The *L2K sting* interface consists on M16-1.5 (fine) threaded hole.

Sample holder can be made of common grade A2 stainless steel (EN 1.4301 / AISI 304).

Test conditions:

- Heat flux:
- Temperature: 500-900°C

50-100 kW/m2

Complex Object Testing: Reaction wheel from Rockwell Collins

- Aim is to do two tests:
 - one at low flux to assess fragmentation
 - 2. one at higher flux on the surviving steel parts.

D4D - REACTION WHEEL D4D MODELLING

Contours are heat flux (Lees model)

- First row: full wheel
- Second row: covers removed (top and bottom)
- Bottom row: ball bearing unit and motor stator

2/26

Contours are heat flux (Lees model)

CONCLUSIONS AND FUTURE WORK

- The astrodynamics part is almost completed
- The software implementing the flux analysis and the de-orbiting highways concept, along with the maneuvers, is prototyped and under final revision.
- A web-version of the software, including also the parts related to design and protection, will be publicly available at the project web-site (http://redshift-h2020.eu/)
- The 3D printing facilities are (nearly)ready to start producing the samples
- ► The first D4D tests are starting in the next weeks
- The impact tests will start as soon as the 3D printed samples will be delivered

ACKNOWLEDGMENTS

The research leading to these results has received funding from the Horizon 2020 Program of the European Union's Framework Programme for Research and Innovation (H2020-PROTEC-2015) under REA grant agreement n. (687500)- ReDSHIFT

(http://redshift-h2020.eu/).

References

- Alessi E.M., G. Schettino, A. Rossi and G. B. Valsecchi, Solar Radiation Pressure Resonances in Low Earth Orbits MNRAS, in press, https://doi.org/10.1093/mnras/stx2507, 2017.
- 2. Alessi, Schettino, Rossi, Valsecchi, Natural Highways for End-of-Life Solutions in the LEO Region, submitted, 2017
- Alessi, Schettino, Rossi, Valsecchi, LEO mapping for passive dynamical disposal, Proceedings of the 7th European Conference on Space Debris, ESOC, 2017
- Rossi et al., The H2020 project ReDSHIFT: overview, first results and perspectives, Proceedings of the 7th European Conference on Space Debris, ESOC, 2017
- Schaus, Radtke, Stoll, Rossi, Colombo, Tonetti, Holbrough, Results of Reference Long-term Simulations Focussing on Passive Means to Reduce the Impact of Space Debris, Proceedings of the 7th European Conference on Space Debris, ESOC, 2017

ACKNOWLEDGMENTS

The research leading to these results has received funding from the Horizon 2020 Program of the European Union's Framework Programme for Research and Innovation (H2020-PROTEC-2015) under REA grant agreement n. (687500)- ReDSHIFT

(http://redshift-h2020.eu/).

The ReDSHIFT Team

- IFAC-CNR: A. Rossi, E.M. Alessi , G. Schettino, G. B. Valsecchi
- Belstead Research Ltd. (BRL): J. Beck, I. Holbrough
- DLR: T. Schleutker
- Deimos Space: F. Letterio, S. Tonietti, G. Vicario de Miguel
- Elecnor Deimos Satellite Systems: J. Becedas, G. González
- Lux Space: F. Dalla Vedova
- PHS Space Ltd.: H. Stokes

- University of Southampton: S. Walker, C. Rumpf, H. Lewis
- University of Thessaloniki: K. Tsiganis, D.K. Skoulidou
- Technical University of Braunschweig: E. Stoll, V. Schaus, J. Radtke
- University of Cologne: S. Hobe, R. Popova
- University of Padova: A. Francesconi
- Politecnico di Milano: C. Colombo, F. Bernelli Zazzera

