OHB System AG Gerrit Proffe 25.10.2017, Clean Space Industrial Days 2017, ESTEC

NVENT

SPACE SYSTEMS

Multi-Disciplinary Design and Breadboarding of Technologies for Early Break-up of S/C during Re-entry

We. Create. Space.

CHB

Agenda

- Objectives
- Study Overview
- What has been done so far?
- Actual Status
- Next Steps

Objectives

Objectives of the Study

The objectives of the activity are

- To define feasible design concepts to achieve a spacecraft structure break-up or structure opening at an altitude above ist natural break-up altitude and
- To demonstrate the feasibility of selected technologies by breadboard development and testing.
- Focus is set on technologies to open and/or release external structural elements and spacecraft modules (e.g. payloads and large appendages) to increase the overall spacecraft demisability

The team to bring D4D to breadboard level

Study Overview

Study Overview

Technologies to increase a satellite's break-up altitude

Identification of existing Joining Technologies

"Joining technologies are components, parts or materials which connect structural elements or equipment of the spacecraft."

Relevant Joining Technologies for D4D Breadboarding

Load Capacity of Structural Joining Technologies

Identification of active and passive technologies

• Where to start? What kind of technologies can be used?

Identification of active and passive technologies

Analysis of environmental loads, derivation of test conditions and test plan

- Representative Flight Conditions Established
 - External environmental conditions
 - Expected thermal response of materials
 - Expected stress response of materials
- Derivation of Test Conditions
 - Representative trajectory may be important for heat soak
 - Constant flux tests for read across to wind tunnel
- Derivation of Test Plan
 - Many parameters to influence the test results (list on the right)
 - A full factorial test would require >70 Million tests !
 - Reduction of varied parameters is based on engineering judgement
 - General approach:
 - One baseline test configuration
 - Variation of individual single parameters from the baseline
 - Variation of multiple parameters where coupling effects are expected

Heat flux Stagnation point pressure Trajectory type Flow direction Mechanical load Load type **Connection type Facesheet material Facesheet thickness** Core material Core thickness Core cell dimensions Core cell wall thickness Insert type external Insert type internal Insert material Potting type Potting system **Facesheet glue** Insert size

Actual Status

Preparartion of test prediction simulations

- CFD to support prediction of wind tunnel forces expeted on surface of test articles
 - given sample dimensions and test conditions aerodynamic forces upon surface can be estimated
- Thermal Modelling representative of test articles (applicable to both facilities)
 - Static facility
 - Given radiative heat flux thermal analysis of model can be undertaken
 - Geometry likely to be simplified/broken-up for analysis and developed/combined with time
 - Wind tunnel
 - Convective heat flux upon surface more difficult to estimate
 - Geometry again simplified at first

Actual Status

Next Steps

Next Steps

OHB System AG Gerrit Proffe 25.10.2017, Clean Space Industrial Days 2017, ESTEC

Regrit Proffe OHB System AG Bremen, Germany gerrit.proffe @ohb.de

SPACE SYSTEMS

Multi-Disciplinary Design and Breadboarding of Technologies for Early Break-up of S/C during Re-entry

We. Create. Space.

CHB

Belstead

NVENT