D4[®]P

Demisability for Optical Payloads

Simone Bianchi - Thales Alenia Space

ESA / ESTEC, October 25th 2017

25 / 10 / 2017

Ref.: Clean Space Industrial Days & ATD3 Workshop

© 2017 Thales Alenia Space

Consortium & Team

Identify design solutions to improve the **demisability** of optical payloads carried by satellites flying in LEO without impacting the payload **performances**

© 2017 Thales Alenia Space

Methodology & Achievments

Methodology

SO/P P/L survey

Pack-La Debri

real reader

0.7.70.07.44

PROCESS 30081 - Selectro - Control

OF FEM LASS BUTTY BUS

CERCA (Raps - Mass -

COMPONENTS DIA - Pargooits

MATERIAL PERCANUA

COLORADITE COPY

Pedice De Dris A/M

Imprime 24

Abetation OWNER PROPERTY.

 $D_{n} = \sum (2.5 + D_{n})$

Photose Plat

Netocity & Heat Transfe

0 10,000

AND HIBOTUNE (DDATE BOOK

PRIOR DUTION OPENSIANCE

G SMANT LEMENT CONTRIDUCTION ADDRESS

LAVIERING Parts Secretation

CENTRAL PROCESS DOM:

APERLINE - CRU- Paral Parallel

S D4D tech identification

Peckare Debris famber

ABOHTECTURE OLD CARDING

CERCIP Continement Box

***** TADAP preliminary simulations

F (LKLONGTH

ATTIN SEAL

micono:

Rear By SCEN. NO. Contoined Realty.

Pee of ry

east Geve

LOVAT OLIVER

S RSC selection

© 2017 Thales Alenia Space THALES ALENIA SPACE OPEN

Reduce Consulty Plan

-

17.00

Comme tra

Aeropy n Shape

Cabina C. Banat

Increase Calific

DHOW 15,70mmt

definity Margan

LAVERING, POHITEROPERTON

-

Ceteria Mass

ABLATIONS PROCEEDINATIO

Methodology

Number of the second se

Contributor Quotation	Mass	Re- evaluation	Optical performance	Demisability	TRL	Cost
•	Allans Increases analossication (x fast resorve for controlled recentry)	Technolo must compactifile with spit and attempionent	lecture, res compactible with cptical resourcements	No derries or firsten derries (residual barris) of stanceptable	Annevation Of Investigation conseque	
2	Mass increase leads to a better efficiency of demite vs controlled reentry	Requests a full re- fundation of optical arrangement & instrument architecture	Such technics decrease very much the performances and impose a full rework with a high risk to not recover it	Secondary technic insufficient but slightly improved demisability (requests, at least, the use of another main demise technic)	Prototype demonstra -tion	Cost increase could jeopardize the mission & interest of demise vs control reentr is questionable
5	Significant mass increase	Requests limited modifications of the instrument architecture & some optical layout optimization	Decreases significantly the performances and imposes important to full rework (active optics use for example)	Important demise impact (small residual parts, could be solved by association with another technic)	Demonstra for validation	Increases significantly th OP/L cost & could be envisaged through sharin of optimizatio and/or development costs
•	Limited mass increase	Null or very limited impact on erchitecture	Null or very limited impact on the performance	Quasi full demise (very small residual parts, could be easily solved by design optimization of the elements)	Flight multifica- tion	increases the OP/L cost four remains competitive v controlled rentry
10	Null of very limited mass			Total demise	Plight	Limited cost impact

🔊 D4D tech rank

Critical	Modification					In	npact							Trade-		
element	material	for demise	M	ass	R evalu	e- ation	Opt perfor	tical mance	De	mise		RL	Cc	st	off /10	Rank
		Mass reduction 3D print	10	20	10	10	10	45	5	22.5	5	10	8	8	7.7	3 (not simulated)
A-frame	Ті	Invar 3D print	8	16	10	10	10	45	10	36	5	16	8	8	8.9	2 (not simulated)
		Invar	8	16	10	10	10	45	8	36	8	16	8	8	8.7	3
		AI	10	20	8	8	8	36	10	45	10	20	5	5	8.9	1

S D4D tech implementation

S D4D tech LF & HF simulation

25 / 10 / 2017

6

© 2017 Thales Alenia Space

Achievments: Critical elements and criticality level

In general different reasons of criticality, can be identified as:

Material

Mass

Shielding

Configuration

Depending on the item, there can be a combination of such factors with different weighting.

Space

a Thales / Leonardo company

THALES ALENIA SPACE OPEN

Ref.: Clean Space Industrial Days & ATD3 Workshop

Achievments: Critical elements and criticality level

CRITICAL ELEMENTS

AND CRITICALITY

D4D TECHNIQUES

LF ANALYSIS

Concerning the criticality level as evaluated in D4OP, it can be noted that the have either a critical material assignation (ceramic bench, cryo-cooler assembly, etc.) or work as connector (bipods, a-frames) therefore influencing the separation of the whole P/L

On the other hand, components which have larger possibility of material swap and / or do not relevantly influence the separation – and then the demisability- of another components, have a lower criticality

Is to remark that the following ranks are affected by uncertainties if items of same typologies but very different characteristics are considered (e.g. Big Mirrors)

Achievments: Critical elements and criticality level

Seasy / Medium: aluminum, copper, CFRP, GFRP, epo glues

Medium / Difficult: steel, Inconel, invar, zerodur, ZnS, CFRP

S. Difficult: titanium, silica

Sampossible: ceramics

Name	Heat of Demise
[-]	[kJ/kg]
AA7075	810
A316	1100
TiAl6V4	1594
Copper	701
Inconel	1164
Invar	980
Steel	1190
Silicon- Si	2783
Silica - SiO ₂	3370
Zerodur	1486
Si_3N_4	4566
SiC	5040
GFRP	593
Pure Al	971
Task3 Glue	760
Task2 Glue	551
ZnS	986

0

© 2017 Thales Alenia Space

Achievments: D4D techniques identification

Achievments: LF analysis modelling and results

The modelling of the LF simulations, followed the below-mentioned rules. With TADAP a first iteration was performed about the demise rank then with SCARAB simulations the demise results and rank were refined.

CRITICAL ELEMENTS AND CRITICALITY

D4D TECHNIQUES

IDENTIFICATION

LF ANALYSIS

MODELLING AND RESULTS

HF ANALYSIS

MODELLING AND RESULTS

DEMISE RESULTS

AND D4D TECHNIQUES RANK

ROADMAPS AND TEST PLANS

OPEN POINTS

11

🛸 Initial orbit

Possibility of set up different Trajectory Earth Fixed initial data

Sk Fragmentation

- Possibility of simulating all the S/C as compound of simple shapes
- Possibility of simulating a progressive fragmentation

S. Aero-thermal model

- Randomly tumbling heating model 3DoF model
- Implementation of simplified shielding between the objects (the mutual shielding is updated according to fragmentation process)
- Implementation of thermal conductivity between the objects

🛰 Geometrical

- Adoption of simplified primitives to model complex objects
- Shapes, dimensions and position close as-much-as-possible to the real objects

S. Connections

- Multiple connections are generally modelled
- The weakest connections are modelled with a glue layer:
- o Mirrors / mounts
- o A-frames (upper part) / benches

🛰 Materials

Adoption of the most representative material for each shape

🛰 Masses

• The masses of single objects are close as-much-as-possible to the real objects.

_

- Mass balance (i.e. total masses almost equal at platform and payload level).
- Adoption on "thermic" masses to obtain the above-mentioned balance (i.e.: all the items that are not modelled in detail, and included in large aluminium masses to obtain the correct mass)

🛰 Granularity

- Almost all the critical objects (for each payload) are simulated, at least one for each typology
- Focus on Payloads: platform are model with an external cover with an internal "thermic"

© 2017 Thales Alenia Space

Achievments: LF analysis modelling and results

Achievments: LF analysis modelling and results

	💸 RSC TADAP resu	Ilts • 1	HC bench Zer &Tit items op	timiz	HC bench Invar all mounts Invar A-fra & ste I/F weakening	el fittings	 HC bench AlSi all mount AlSi A-frames AlSi fittings 	\s ;
CRITICAL ELEMENTS AND CRITICALITY				HC bench Invar big mount Invar A-frames I/F weakening	s •	HC bench Opt Invar all mo Opt Invar A-fran Opt steel fittings	unts nes	 Old ceramic bench AlSi all mounts AlSi A-frames AlSi fittings
D4D TECHNIQUES IDENTIFICATION		CA Baseline [m ²]	CA Case 1 [m ²]	CA Case 2 [m ²]	CA Case 3 [m ²]	CA Case 4 [m ²]	CA Case 5 [m ²]	CA Case 6 [m ²]
LF ANALYSIS MODELLING AND RESULTS	Bipods Lower Bipod Fittings Upper Bipod Fittings	0 0 1.39	0 2.64 1.39	0 0 1.39	0 2.64 1.39	0 2.64 1.39	0 0 1.45	0.00 0.00 1.39
HF ANALYSIS MODELLING AND RESULTS	Spectrometer Bench Mount of Mirror 1 Mount of NIR Folding Mirror	1.25 Att on bench Att on bench	0 0.94 0	0 0 0	0 0 0	0 0 0	0 0 0	1.32 Att on bench Att on bench
DEMISE RESULTS AND D4D TECHNIQUES RANK	Mount of SWIR 1 Imager Mount of NIR/SWIR Dichroic Mount of SWIR 1 PG Mirror	Att on bench Att on bench Att on bench	1.52 1.01 1.46	0 0 1.46	1.52 1.01 1.46	1.52 1.01 0	0 0 0	Att on bench Att on bench Att on bench
ROADMAPS AND TEST PLANS	Mirror 1 NIR Folding Mirror SWIR 1 Imager	1.13 0 Att on bench	1.13 0 0	1.13 0 0	0 0 0	0 0 0	1.13 0 0	1.13 0 Att on bench
OPEN POINTS	NIR/SWIR Dichroic SWIR 1 PG Mirror SWIR 1 Cover	Att on bench Att on bench	0 0 1.55	0 0 1.57	0	0	0	Att on bench Att on bench 1.57
	SWIR 1 Internal	Att on cover	Att on cover	Att on cover	0	0	0	0.00
	A-Frames	1.53	1.53	1.53	1.53	1.53	0	1.53
	Electronic Box	0	0.81	0	0.81	0.81	0.81	0.00
	Telescope Mount	2.51	0.94	0	0.01	0.01	0.01	0.00
	Telescope Mirror	1.13	1.13	1.13	0	0	1.13	1.13
	Telescope A-Frames	1.15	1.15	1.15	1.15	1.15	0	1.15
	TOTAL	9.00	13.96	7.96	8.28	6.83	3.87	6.49

Baseline

- The re-entry consists of progressive fragmentation, starting from outside to inside, as was already predicted by WP2120 simulations
- Spectrometer Bench survives entirely, with optical elements attached to it, except SWIR 1, Mirror 1 and NIR Folding Mirror, which separate from it
- Bipod assembly detaches from optical bench and SVM panels, eventually titanium end-fittings survive
- S. A-frames survive

D4D cases

- Spectrometer bench always demises when swapped from ceramic to aluminum sandwich
- Section 2018 Secti
- Each mount has a different behaviour for each case, only Case 5 shows a clear improvement
- Little mirrors usually demise, Mirror 1 demises only if in zerodur/CFRP sandwich
- Scryostat demises only in Case 3 and Case 4
- S. A-Frames only demise if in aluminium
- Calibration Unit and Electronic Box results are not much relevant / affordable due to the low granularity level of their models
- Telescope casualty area was deduced by applying the results of spectrometer mounts, mirrors and a-frames to the Telescope Assembly itself.

Main outcomes

- Baseline and Case 6 are two different scenarios, difficult to compare with the other D4D ones (Case 1 to Case 5)
- Case 5 is the best one
- Case 4 is better than Case 2
- Case 4 improves Case 3
- Sector Case 6 shows improvements only not related to Spectrometer

Ref.: Clean Space Industrial Days & ATD3 Workshop

© 2017 Thales Alenia Space

Achievments: HF analysis modelling and results

in both HF runs, a relevant amount of technique was considered, trying to develop implementative solutions which both increase demisability without impacting optical performances.

Most of the solutions can be summarized in the following typologies:

Achievments: HF analysis modelling and results

Achievments: HF analysis modelling and results

Achievments: Demise results and D4D tech rank

	Critical	Current	Modification					Ir	npact							Trade-	
	element	material	for demise	M	ass	R evalu	e- lation	Op [.] perfor	tical mance	De	mise	Т	RL	С	ost	off /10	Rank
CRITICAL ELEMENTS	Optical	coromics	CFRP (Al HC)	10	20	10	10	5	22.5	10	45	10	20	8	8	8.4	1
D4D TECHNIQUES	Bench	cerannes	Zerodur (CFRP HC)	5	10	8	8	10	45	10	45	2	4	5	5	7.8	2 (not simulated)
IDENTIFICATION																	
I F ANALYSIS	Critical	Current	Modification					In	npact							Trade-	
MODELLING AND RESULTS	element	material	for demise	Ma	ass	Re evalu	e- ation	Opt perfor	tical mance	De	mise	т	RL	Co	st	off /10	Rank
HF ANALYSIS MODELLING AND RESULTS			Mass reduction 3D print	10	20	10	10	10	45	5	22.5	5	10	8	8	7.7	3 (not simulated)
DEMISE RESULTS AND D4D TECHNIQUES RANK	A-frame	ті	Invar 3D print	8	16	10	10	10	45	10	36	5	16	8	8	8.9	2 (not simulated)
POADMADS AND TEST DI ANS			Invar	8	16	10	10	10	45	8	36	8	16	8	8	8.7	3
ROADINARO AND TEOT PEANO			AI	10	20	8	8	8	36	10	45	10	20	5	5	8.9	1
OPEN POINTS			Mass reduction 3D print	10	20	10	10	10	45	5	36	5	10	8	8	7.7	3 (not simulated)
	End-	ті	steel	2	4	8	8	8	36	2	9	10	20	10	10	5.8	4 (not simulated)
	nttings		AI + Brass	10	20	5	5	8	36	10	45	10	20	5	5	8.7	1 (not simulated)
			AlSi + Brass	10	20	10	10	10	45	10	45	2	4	5	5	8.6	2

© 2017 Thales Alenia Space

17

nia

Space

Achievments: Demise results and D4D tech rank

CRITICAL ELEMENTS AND CRITICALITY	
D4D TECHNIQUES	
LF ANALYSIS MODELLING AND RESULTS	
HF ANALYSIS MODELLING AND RESULTS	
DEMISE RESULTS AND D4D TECHNIQUES RANK	
ROADMAPS AND TEST PLANS	
	_

OD	CAL.	n/	D IN	T	ð
U۲	EN.	۲١	אוע		0

18

Critical	Current	Modification					In	npact							Trade-	
element	material	for demise	м	ass	R evalu	e- iation	Opt perfor	tical mance	De	mise	т	RL	Co	ost	off /10	Rank
		Mass reduction 3D print	10	20	10	10	8	36	6	27	5	10	8	8	7.4	4 (not simulated
Imager	ті	Invar 3D print	10	20	10	10	10	45	8	36	5	10	8	8	8.6	2
mounts		Invar (glued feet)	10	20	10	10	10	45	8	36	10	20	8	8	9.3	1
		AlSi	10	20	10	10	8	36	10	45	2	4	5	5	8.0	3
Mirror		Mass reduction 3D print	10	20	10	10	8	36	10	45	5	10	8	8	8.6	1
Mounts	ті	Invar 3D print	10	20	10	10	10	45	8	36	5	10	8	8	8.6	2
		AlSi	10	20	10	10	8	36	10	45	2	4	5	5	8.0	3
		Mass reduction 3D print	10	20	8	8	8	36	5	10	5	10	8	8	7.0	3
Mounts	Ті	Invar 3D print	6	12	8	8	10	45	10	45	5	10	8	8	8.5	2 (not simulated
		Invar (glued feet)	6	12	8	8	10	45	10	45	10	45	5	5	9.2	1
		Invar 3D print	8	16	8	8	10	45	7	31.5	5	10	8	8	7.9	2
PG+P Mounts	ті	Invar (glued feet)	8	16	8	8	10	45	7	31.5	10	20	8	8	8.6	1
		AlSi	10	20	8	8	8	36	10	45	2	4	5	5	7.9	3

© 2017 Thales Alenia Space

Achievments: Demise results and D4D tech rank

CRITICAL ELEMENTS AND CRITICALITY D4D TECHNIQUES IDENTIFICATION LF ANALYSIS MODELLING AND RESULTS HF ANALYSIS MODELLING AND RESULTS DEMISE RESULTS AND D4D TECHNIQUES RANK ROADMAPS AND TEST PLANS OPEN POINTS

	Critical Current	Modification					In	npact							Trade-		
	element	material	for demise	м	ass	R evalu	e- Iation	Op perfor	tical mance	De	mise	т	RL	C	ost	off /10	Rank
	Cryostat		Ti Glued covers	6	12	10	10	10	45	7	31.5	10	20	10	10	8.6	2
		Ti	AlSi Screwed cover	8	16	10	10	10	45	8	36	2	4	5	5	7.7	3
			AI	10	20	8	8	8	36	10	45	10	20	8	8	9.1	1

Critical Current	Modification					In	npact							Trade-		
element	material	for demise	M	ass	R evalu	e- ation	Opt perfor	tical mance	Dei	nise	TI	RL	Co	ost	off /10	Rank
Polar.	A1	AI	10	20	10	10	10	45	6	27	10	20	10	10	8.8	2
Mount	AI	Al GFRP blades	10	20	8	8	10	45	10	45	10	20	8	8	9.7	1

© 2017 Thales Alenia Space

altran CHIS ThalesAlenia

Achievments: Demise results and D4D tech rank

CRITICAL ELEMENTS AND CRITICALITY D40 TECHNIQUES IDENTIFICATION LF ANALYSIS MODELLING AND RESULTS HF ANALYSIS MODELLING AND RESULTS DEMISE RESULTS AND 04D TECHNIQUES RANK ROADMAPS AND TEST PLANS OPEN POINTS

Critical	Current	Modification					In	npact							Trade-	
element	material	for demise	м	ass	R evalu	e- Iation	Op perfor	tical mance	De	mise	Т	RL	C	ost	off /10	Rank
Cryostat		Ti Glued covers	6	12	10	10	10	45	7	31.5	10	20	10	10	8.6	2
	Ti	AlSi Screwed cover	8	16	10	10	10	45	8	36	2	4	5	5	7.7	3
		AI	10	20	8	8	8	36	10	45	10	20	8	8	9.1	1

Critical Current	Modification					In	npact							Trade-		
element	material	for demise	М	ass	R evalu	e- lation	Op perfor	tical mance	Dei	mise	т	RL	Co	ost	off /10	Rank
Polar.	A1	AI	10	20	10	10	10	45	6	27	10	20	10	10	8.8	2
Mount	AI	Al GFRP blades	10	20	8	8	10	45	10	45	10	20	8	8	9.7	1

© 2017 Thales Alenia Space

Space

Achievments: Demise results and D4D tech rank

Ref.: Clean Space Industrial Days & ATD3 Workshop

21

© 2017 Thales Alenia Space THALES ALENIA SPACE OPEN

Achievments: Roadmaps and test planes

 25 / 10 / 2017

 Ref.:
 Clean Space Industrial Days & ATD3 Workshop

22

© 2017 Thales Alenia Space

Achievments: Open points

Ref.: Clean Space Industrial Days & ATD3 Workshop

23

Conclusions

- So Different P/Ls were investigated, identifying the critical items and associated criticalities, eventually providing a significant knowledge of the different components and configurations
- Section Development of very complex LF (TADAP) and HF (SCARAB) models, in order to represent the specific feature to both baseline and D4D re-design components.
- S. Different D4D techniques were identified and simulated, by applying them to a large number of items via detailed re-designs, concerning demise, good results about:
 - HC bench
 - 3d-printed invar (imagers)
 - Invar monolithic (imagers)
 - 3d-printed titanium (mount 1)
 - Invar-blades mount (dichroic)
 - CFRP-zerodur mirror (mirror 1)
 - Reduced zerodur mirror (mirror 3)
 - Polarization scrambler
 - Bipod fittings

24

- Aluminum and invar a-frames
- Aluminum cold box
- Sefficacy of the from-LF-to-HF approach: by first adopting LF and quick simulations is possible to have a first screening of the most promising choices, which are then refined with HF S/W, saving time in terms of modelling and computational costs
- 🗞 Identified D4D techniques well investigated under demise and not-demise aspects to provide a fully preliminary evaluation about their applicability on O/P items
- Some but not trivial open points, which underline the difficulty of apply D4D techniques to optical P/Ls, finally remarking the importance of this Study and future potential activities on the same topics

