

PIAP Group

PIAP INSTITUTE

PIAP
OBRUSN
INDUSTRIAL
AUTOMATION

PIAP SPACE

PIAP

SCIEN-TECH TECHNOLOGY TRANSFER

PIAP GROUP:

SPECIALISATION AREAS: MOBILE & INDUSTRIAL ROBOTICS, AUTOMATION, MECHATRONICS

EXPERIENCE: 50 YEARS OF MARKET ACTIVITIES

STAFF: 320 (60% ENGINEERS)

TURNOVER: 15 MLN EURO/YEAR

PRODUCTS: 9 UGVs MODELS

SERVICES: 100+ INDUSTRIAL ROBOTS UNIT INSTALED

WORLD PRESENCE: 20+ COUNTRIES, 4 CONTINENTS

PIAP Group

Przemysłowy Instytut Automatyki i Pomiarów PIAP

PIAP Group

PIAP Space

<u>PIAP SPACE - COMPANY DEDICATED FOR SPACE</u> <u>ACTIVITIES</u>

OWNER:

PIAP INSTITUTE, GOVERMENTAL INVESTOR - INDUSTRIAL DEVELOPMENT AGENCY

SPECIALISATION AREAS:

ROBOTICS, MGSE, MECHANISMS

ACTIONS:

MEMBER OF SRC ROBOTICS, LEADING SPACE ROBOTICS ADVISORY GROUP IN POLAND, MEMBER OF POLISH SPACE MINING GROUP

ROBOTIC MISSIONS:

SPACE TUG, ADR, ON-ORBIT SERVICING, REFUELLING & ASSEMBLING, ASTEROID MINING

ROBOTIC ELEMENTS:

GRASPING & HOLDING, END-EFFECTOR TOOLS, LIGHT-WEIGHT ARM, MOBILE PLATFORMS, PERCEPTION, ROBOT – USER INTERFACING, AUTOMATIZED INTEGRATION & INSPECTION OF SATELLITES & LAUNCHER ELEMENTS

IMPORTANT ROLE:

TRANSFERRING TO TERRESTIAL

Rationale & technology need

Market areas:

- Active Debris Removal
- On-Orbit Satellite Servicing
- On-Orbit Satellite Refuelling
- Space Tug concept

Similarities:

- Prepared & unprepared client satellite
- Minimal modification of existing satellite buses
- Launch Adapter Ring as a grasping point.

Technology gap in the area of grasping devices.

LAR Grippers – technology building blocks

ADRexp (TRP):

- Grippers B/B development (mechanism)
- HIL close-loop tests

Polish study:

Sensors to monitor jaws configuration

MGSE (TRP)

Funtional,
quality &
environmental
tests

COMRADE (TRP):

- Gripper SW model
- Contact dynamics simulations

I3DS (OG4):

- Tactile sensors
- Force / Torque sensors

Key requirements

1. Launch Adapter Ring compatibility

Particular model or several similar.

2. Capture time

Decreasing risk that object would fly away, decreasign requirements for capture window.

3. Capture envelope

Static and dynamic misalignments of the target.

4. Loads transfer

Allowing different operations: robotic arm and chaser reorientation, detumbling, orbit change (including deorbitation).

5. Autonomy & automatisation

6. I/F with servicing satellite

Robotic arm or directly structure of the chaser.

Gripper #1 design overview

Operations divided between two grippers:

- Antropomorfic: enclosing, soft capture and handling misalignments
- Strong gripper: increasing capabilities of loads transfer
- Each gripper driven by separate motor

Gripper #1 design overview

Gripper #2 design overview

Operations divided between two grippers:

- Antropomorfic: enclosing, soft capture and handling misalignments
- Strong gripper: increasing capabilities of loads transfer
- Jaws rotational movement to enclose LAR, linear to increase gripping force
- Rolls to decrese friction impact

Grippers #2 operations

Grippers performance

VALIDATION

AIR TEST BENCH

ROBOTICS RENDEZVOUS TEST BENCH

VALIDATION

VALIDATION

LAR Gripper MGSE for TVAC validation

LAR gripper

ASSIST

Summary

GRASPED OBJECT ALWAYS MUST BE ENCLOSED FIRST

- WIDTH OF THE FINGERS IS THE MAIN LIMITATION TO REACH HIGHER MISALIGMENTS "WALL" CONCEPT
- THE HIGHER WIDTH FINGERS HAVE THAN THE GRIPPER BETTER HANDLE ALFA MISALIGMENTS AND ALFA AND BETA TORQUE LOADS
- IN CASE OF NOT FULLY CORRECT HOLDING USING SECOND GRIPPER ALLOW ITERATIVELY REACH CORRECT HOLDING
- FOR SOME CASES CONTROLLING EACH FINGER SEPARATELY IS USEFUL
- FOR SOME CASES INSTALLING ROLLERS ON THE TIPS MIGHT BE USEFUL
- WORTH TO APPLY ADDITIONAL "STRONG GRIPPER", "LOW COST", LOADS TRANSFER SIGNIFICANTLY INCREASING

Gripper translation from ADR to Space Tug

Gripper translation from ADR to Space Tug?

Launch service providers

- ArianeSpace Ariane 5, Soyuz (Starsem 2001r. manual as well), Vega
- ULA Atlas V, Delta IV, Delta II
- SpaceX Falcon 9, Falcon Heavy
- EUROCKOT Rockot
- ILS -Proton
- CASC Long March 3
- MHI Launch Services HII-A
- SeaLaunch Zenit
- LM Athena
- Orbital ATK Antares, Pegasus
- Kosmotras Dnepr

Launch statistics (29.12.2015)

220/231 Ariane family

469/582 Atlas family

Launch Vehicle Tries Successes Delta 2 151 153 Delta IV 29 30 859 884 Soyuz Ariane 5 57 58 Atlas V 59 60 78 89 Proton 38 47 Zenit Falcon 9 14 15 Rockot 23 25 5 5 Vega LM-3 78 83 H-2A 28 29 22 Dnepr 21 42 Pegasus 37

www.spacelaunchreport.com

Max. payload mass

LV	LEO [t]	SSO [t]	GTO [t]	GEO [t]
Delta 2	3.470	-	2.190	-
Delta IV	28.370	-	13.810	-
Soyuz	4.850	4.400	3.250	1.440
Ariane 5	20.000	10.000	9.500	-
Atlas V	18.850	-	8.900	-
Proton	23.000	-	6.930	3.300
Zenit	13.740	-	6.160	4.200
Falcon 9	22.800	-	8.300	-
Rockot	2.140	1.300	-	-
Vega	2.300, 1.430 (polar 700 km)	1.260 (800 km)	-	-
LM-3	11.500	-	5.500	-
H-IIB	16.500	-	8.000	-
Dnepr	3.200	1.800	-	-
Pegasus	0.400	-	-	-
Angara	24.500	-	6.600	-

Launch service providers' data, www.spacelaunchreport.com

Launch adapter providers

- RUAG (Saab Ericsson Space)
- EADS Casa Espacio (CASA)
- MOOG
- BLS Boeing Launch Services
- Yuzhnoe SDO

Launch service providers

- ArianeSpace Ariane 5 (RUAG, EADS CASA), Soyuz (SAAB, CASA), Vega(EADS)
- ULA Atlas V (ULA, RUAG?), Delta IV (ULA), Delta II (Boeing)
- SpaceX Falcon 9, Falcon Heavy (RUAG, EADS)
- EUROCKOT Rockot (EADS)
- ILS –Proton (RUAG, EADS)
- CASC Long March 3A (RUAG)
- MHI Launch Services HII-A
- SeaLaunch Zenit
- LM Athena (RUAG)
- Orbital ATK Antares (RUAG optional), Pegasus
- Kosmotras Dnepr

Summary

Similarities:

- The majority are RUAG and EADS CASA
- 3 main diameters 937, 1194, 1666 mm
- The occurrence of groove
- The occurrence of outer surfaces' slope
- Material –Al. alloy
- Coating:
 - Contact surface: MIL-C-5541 cl. 3, resistance <10 0hm
 - o beyond: chromic acid anodizing
- Roughness: 1.6-3.2 (63 inna norma)

Differences:

- The width for cross sections for different LAR diameters
- The slope of outer surfaces:
 - Contact with sep. System<9,11,15,20> st.
 - o Upper surface: 90 deg. +/- 30
- The groove position and its dimensions – differences of about 1-2 mm
- The depth of cut-outs, range (0 5.08 mm)
- Sometimes chamfered edges of the cut-outs (47 st.)
- Some tolerances vary
- Unique cross sections may vary significantly

Gripper translation from ADR to Space Tug

