Design and Performance Analyses of the DLR Robotic Manipulator Arm for the e.deorbit Mission

<u>Steffen Jaekel</u>, R. Lampariello, W. Rackl, B. Brunner, O. Porges, and E. Kraemer (1)

Knowledge for Tomorrow

- M. Pietras (2)
- J. Ratti (3)
- R. Biesbroek (4)
- (1) German Aerospace Center (DLR)
- (2) OHB System AG
- (3) MDA Corporation
- (4) ESTEC

Challenges of Robotic Spacecraft for OOS and ADR

- In general: complex free-floating contact operations in close-proximity
- Unintended contact can lead to unsuccessful capture: upon contact capture needs to be assured
- **uncertain environment** (target not prepared for servicing)
- Free-floating dynamics: manipulator has **direct physical feedback** on its floating base: GNC stabilization

www.DLR.de • Chart 7 Design and Performance Analyses of the DLR Robotic Manipulator Arm for the e.deorbit Mission

e.deorbit - Phase B1 Baseline Capture Concept

Arm Technology

Gripper (OHB)

- Two spindle-driven brackets
- Movable, spring-driven, inclined grip jaws on each side
- Contact points only on dedicated rolls
- Inclined, movable brackets: horizontal force increases vertical force
- Full form closure with Ariane launch adapter ring

Gripper (OHB): Grasping Process

Clamp (MDA)

- Achieve stiff force closure between spacecraft
- Alignment mechanism for adjusting de-orbit thrust
- Light curtain to determine LAR in capture envelope
- Spring-loaded latch close upon the LAR
- Jaws fully closed by motor drive

OD Jaw

Workspace Analysis

- Capability map – quantification of possible discretized directions in subspace

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

- Eucleadian space is discretized into voxels and orientations (RPY)
- Color intensity identifies feasible end-effector poses
- Direct insight into workspace of the robot
- Used for validation of kinematics
- Accounts for self-collision

Workspace Analysis: Capture

- Capture configuration at arm delivery point (satellites CoG's are aligned)
- Good reachability robustness in case of unexpected drift

Workspace Analysis: Clamping

- Clamping position analysis: 90deg clamp configuration optimal considering possible grasp point, safe trajectory, reachability
- Some distance required between grasp point and clamp point due to reachability and to allow better elbow placement (pointing away from potential collisions)

Arm Flexibility

- Multi-body simulation in Simulink/SpaceDyn and SIMPACK with free-floating target, chaser and attached manipulator
- Dynamic modes and frequencies of manipulator assembly and stack
- Impacts of arm structural flexibility on accuracy and control approach

Arm Flexibility: Grasped 1st Mode

Arm Flexibility: Docking 1st Mode

Arm Flexibility: Induced TCP Error for Capture

- Arm capture maneuver, speed normal (up to 6deg/s, 10s maneuver time) and slow (up to 3 deg/s, 20s maneuver time)
- Resulting error: 0.1mm (normal) and 0,02mm (slow)

Arm Flexibility: Induced TCP Error for Docking

- Docking maneuver, speed normal (up to 5deg/s, 50s maneuver time) and slow (up to 2.5 deg/s, 100s maneuver time)
- Resulting error: 3.5mm (normal) and 1mm (slow)

Controller Interaction: Free-Floating vs. Free-Flyer

- Space robot: Free-flyer: two controllers (robot control and GNC) simultaneously act on the same system and could challenge each other
- Open loop (no direct information shared) vs. Closed loop (direct information shared)
- Coupled (two distinct controllers) vs. Combined (one mighty controller) approach
- Potential problems: different -**Platform position AOCS-robotic** Controller and attitude sampling rate (1kHz vs. 1-10Hz) interaction architecture control and bandwidths, delays and **Free-floating** stability (AOCS passive) No data interface (own measurement Coupled **Free-flyer** (AOCS holds relative (separate position and attitude controllers) **Dedicated data** interface (information shared) Combined (same controlle)

Controller Interaction

- From GNC to robotic controller
 - Thruster actuation forces
 - Satellites relative pose and derivative (from relative navigation sensors)
 - Inertial pose and derivative (w.r.t. orbit position, for computing centrifugal forces)
- From robotic controller to GNC
 - Forces and torques acting on base
 - Robot CoM w.r.t. base (for global CoM and inertia update)

Controller Results – Z-Rot, TCP Zoom-In

Controller Results – Z-Rot, Arm

De-Orbit: Solar Array Behavior

- Multi-body dynamics model in Matlab/Simulink environment using the SpaceDyn library and SIMPACK for verification
- Solar array modelled as rigid panel segments conected by flexible joints
- Parameters tuned to fit known properties of array

Solar Array Dynamics – Solar Array Tip (90deg Clamp)

 R_{Tip}

 Solar array tip position relative to platform COG for 90deg clamping position

7

6.5

5.5

z - m

Solar Array Dynamics – Boom and Array Joints (90deg Clamp)

- Rotation angle of boom (left) and solar array (right) joints for 90deg clamping position
- Less rotation compared with 180deg clamp (1.5deg vs. 0.8deg)

www.DLR.de • Chart 31 Design and Performance Analyses of the DLR Robotic Manipulator Arm for the e.deorbit Mission

e.deorbit - Analysis of De-Orbit Maneuver for 180deg clamping position

Solar Array Dynamics – Solar Array Tip (Damped, 90deg Clamp)

- Solar array tip position relative to platform COG for 90deg clamping position
- Robot arm is grasping at the solar array boom (middle and end) and passively damping its motion (600Nm/rad)
- Better timely behavior, absolute peak is not damped significantly
- Can improve de-orbit pointing accuracy but does not decrease chance of breaking

Introduction – Space Robotics

- Future and already deployed robot applications in space:
 - In-space robotic assembly (ISRA): Shuttle Arms
 - EVA assistance: Robonaut, DLR's Justin, small satellites for inspection
 - Robotic exploration: MER's
 - On-orbit servicing (OOS) for prolonging lifetime of operational satellites, repair & refuel (RRM), extend or upgrade functionality (Hubble)
 - OOS for **active debris removal** from LEO or re-orbiting into graveyard orbit in GEO (DEOS)
 - Dexterous manipulators play essential role robotic manipulation in space – based on DLR's 7-DoF lightweight robot (LWR) → Rokviss (middle) and 7-DoF space manipulator (bottom) with impedance control concept

Mechatronic Arm Positioning Accuracy

- Following aspects were included in the accuracy analysis:
- Motor-side joint position sensor (motor commutation sensor) resolution, relative accuracy, and absolute accuracy
- Harmonic Drive gearbox friction, stiffness, and backlash
- Output bearing friction and stiffness
- Harness disturbance torque
- Structural manufacturing inaccuracies and thermal effects (worst-case assumptions)
- Joint deadzone measurements
- Different relevant arm configurations

Parameter	Position control	Impedance Control
Absolute	14mm, 1deg	29mm, 7deg
Relative	0.5mm, 0.02deg	6.3mm

Arm Worst-Case Error Budget

- Overall positioning error (including mechatronics, flexibility and tracking accuracy) is lower that required positioning accuracy by gripper

Parameter	Position	Orientation
Gripper Req.	15mm	5deg
Max. Error	9mm	0,3deg

Solar Array Dynamics – Will it break?

- Carbon strength $\sigma_{(flex, long)} > 1000 MPa$
- *D*=0.06*m*

Inner diameter d $[m]$	$\sigma_{max} [MPa]$
0.01	1.81
0.02	1.81
0.03	1.83
0.04	1.93
0.05	2.2

 Suprisingly - not a problem!

 $\sigma_{max} = \frac{k\alpha_{max}D}{2I} \quad I = \frac{\pi(D^4 - d^4)}{64}$

