

Clean Space Industrial day 24-26 October, ESA-ESTEC

Tethered-tugs dynamics and control verification and models validation by 0g experiments on parabolic flights

Michèle Lavagna, Paolo Lunghi, Vincenzo Pesce Politecnico di Milano, Dept. of Aerospace Science and Technologies, Italy

Introduction – Tethered ADR

- <u>Tethered Tugs</u> related studies focus on:
 - Understanding and **modelling** the involved highly **non-linear phenomena**
 - Implement validated numerical simulators to support system and GNC design
 - Increase Technology Readiness Level (TRL) with tests in relevant environment
- <u>Tethered Tugs</u> need tests and simulations:
 - Tethered system 3D dynamics behaviour in zero-g
 - Active Control for Tethered mated system

Introduction – Tethered ADR

- <u>Tethered Tugs</u> related studies focus on :
 - Understanding and **modelling** the involved highly **non-linear phenomena**
 - Implement validated numerical simulators to support system and GNC design
 - Increase Technology Readiness Level (TRL) with tests in relevant environment
- <u>Tethered Tugs need TESTS and SIMULATIONS</u>
 - Tethered system 3D dynamics behaviour in zero-g
 - Active Control for Tethered Mated Systems

Outline

- The Problem
- The adopted approach
- The Numerical Model
 - Flexible Model
 - Control Formulation
- The Experiment description
 - > Architecture
 - Control Implementation
- Experimental Results
 - Data Reconstruction
- Comparison Numerical/Experimental
- Conclusions

Open Issues in Tethered ADR

POLITECNICO MILANO 1863

Microgravity Experiment on Tethered System for Active Debris Removal Missions

6

SatLeash Experiment selected for ESA's Education Fly Your Thesis! 2016:

- > Opportunity to fly scientific experiment on tethered tug in microgravity conditions
- > 3-days parabolic flight campaign onboard Novespace Airbus A310 Zero-G, Autumn 2016

Adopted Approach – Scenario

Scaled simulation

	Reference Scenario	Test Scenario	
Diameter (m)	1e-2	1e-3	Scaled Model*
Length (m)	100	1	
Target Mass (Kg)	7000	1.5	
Tension (N)	150	0.75	Full dynamical
Acceleration (m/s ²)	2.1e-2	0.5	similitude
Time Manoeuvre (s)	145	3	

**Parabolic flight experiment to validate tethered-tugs dynamics and control for reliable space transportation applications*, 67th International Astronautical Congress, Guadalajara, Mexico.

Study rationale

Acquisition

- Experimental tests reproducing tethered system scaled dynamics in controlled conditions in <u>microgravity</u> environment
- Chaser state, target state and tether tension monitored through sensors

Dynamic Reconstruction

 Recorded measures are exploited to reconstruct the dynamics and the evolution of the system

Initial Conditions Extraction

 Dynamic reconstruction provides initial conditions for the numerical simulations

Numerical Simulations

 Numerical simulations are initialized coherently with measured initial conditions

Verification & Validation

Study rationale

Acquisition

- Experimental tests reproducing tethered system scaled dynamics in controlled conditions in <u>microgravity</u> environment
- Chaser state, target state and tether tension monitored through sensors

Dynamic Reconstruction

 Recorded measures are exploited to reconstruct the dynamics and the evolution of the system

Initial Conditions Extraction

 Dynamic reconstruction provides initial conditions for the numerical simulations

Numerical Simulations

 Numerical simulations are initialized coherently with measured initial conditions

Verification & Validation

MUST:

MUltiple-body dynamics Simulation Tool for active satellite removal system (PoliMi-ESA Study 2015)

- Numerical simulator developed at Politecnico di Milano –DAER
- Last release in 2015
- Suitable for full scale tethered systems simulations and analyses
- Adopted to reproduce tethered mated system dynamics

Numerical Model – Control strategy

- Wave-Based Technique (O'Connor*):
 - Control of complex system in a simple way
 - The interface is the key
 - Understand the interface
 - Measure the interface features
 - Manage the interface
 - Wave concept applicable for all flexible systems

• Waves Concepts:

- When actuator moves, it launches a wave
- The wave passes through the flexible body
- Wave reaches target
- Returning wave moves toward actuator

* "Debris de-tumbling and de-orbiting by elastic tether and wave-based control," in Proceedings of the 6th International Conference on Astrodynamics Tools and Techniques (ICATT), 2016.

POLITECNICO MILANO 1863

Actuator behaves as **ACTIVE viscous-damper** at the end of the tether

 the system becomes constrained to an imaginary skyhook which behaves like a overdamped dashpot to avoid tether collapsing during release phase

Inputs needed:

- Tension Feedback
- Actuator Position/Velocity Feedback

Control Scheme

POLITECNICO MILANO 1863

Velocity Control Scheme:

Control Law:

• References:

WBC OFF – DISTURBANCES ON

WBC ON – DISTURBANCES ON

Study rationale

Acquisition

- Experimental tests reproducing tethered system scaled dynamics in controlled conditions in <u>microgravity</u> environment
- Chaser state, target state and tether tension monitored through sensors

Dynamic Reconstruction

 Recorded measures are exploited to reconstruct the dynamics and the evolution of the system

Initial Conditions Extraction

 Dynamic reconstruction provides initial conditions for the numerical simulations

Numerical Simulations

 Numerical simulations are initialized coherently with measured initial conditions

Verification & Validation

SatLeash Experiment

- Objectives
 - Study tether's dynamics to validate flexible elements numerical simulator
 - Study tether's **effects on the end-body** (i.e. bounceback, wishplash)
 - Test proposed control law for flexible connections in orbit, and demonstrate effectiveness in stabilizing the system
 - **Increase the TRL** for a following on-orbit demonstration mission.
- In flight experiment basics
 - tethered system scaled module: pulling phase reproduction
 - Thrust profiles simulation by linear actuator
 - Stereo-vision + acceleration & tension sensors for dynamics reconstruction

SatLeash Experiment – Architecture

SatLeash Experiment – Architecture

Study rationale

Acquisition

- Experimental tests reproducing tethered system scaled dynamics in controlled conditions in <u>microgravity</u> environment
- Chaser state, target state and tether tension monitored through sensors

Dynamic Reconstruction

 Recorded measures are exploited to reconstruct the dynamics and the evolution of the system

Initial Conditions Extraction

 Dynamic reconstruction provides initial conditions for the numerical simulations

Numerical Simulations

 Numerical simulations are initialized coherently with measured initial conditions

Verification & Validation

Experimental Results – Reconstruction

Stabilization Phase

- Vibrations with different initial slack conditions can be absorbed
- Overshoot is considerably reduced
- Tensioning maintained at the end of the maneuver
- No collapsing of the tether observed

Tether Characteristics			
Material	Polyethylene		
Diameter (mm)	3		
Length (mm)	900		
$Z = 1000 \frac{Kg}{s} \rightarrow No \text{ Control}$			
$Z = 10 \frac{Kg}{s} \rightarrow Estimated Optimal value$			

Experimental Results – Reconstruction

Release Phase

- The potential energy elongation coming from the tether elongation is absorbed
- Relative velocity at the maneuver end decreases
 - The peak of tension is considerably damped
 - **Control robustness**

Tether Characteristics			
Polyethylene			
3			
900			
$Z = 1000 \frac{Kg}{s} \rightarrow No \text{ Control}$			

 $Z = 10 \frac{Kg}{s} \rightarrow \text{Estimated Optimal value}$

Experimental Results

Complete Manoeuvre

POLITECNICO MILANO 1863

Study rationale

Acquisition

- Experimental tests reproducing tethered system scaled dynamics in controlled conditions in <u>microgravity</u> environment
- Chaser state, target state and tether tension monitored through sensors

Dynamic Reconstruction

 Recorded measures are exploited to reconstruct the dynamics and the evolution of the system

Initial Conditions Extraction

 Dynamic reconstruction provides initial conditions for the numerical simulations

Numerical Simulations

 Numerical simulations are initialized coherently with measured initial conditions

Verification & Validation

Comparison Numerical/Experimental

Final remarks and future work

- Non-linear tension model better describes the elastic tethers behaviour
- Deeper analysis are needed on Hunt-Crossley parameters selection
- Non uniform distribution of the tension inside the tether shall be investigated
- **Promising performances** for the proposed wave-based control law in both stabilization and release phase have been highlighted
- Considerable robustness of the wave-based control law have been confirmed
- Full tethered-net system in flight validation
- Higher fidelity tether shape and tension reconstruction
 from distributed sensors
- Net-target contact forces monitoring and reconstruction
- Higher fidelity target dynamics representation for control effectiviness in stack stabilization
- Different control laws and materials larger testing campaign

ADR related work

- Non-linear tension model better describes the elastic tethers behaviour
- Deeper analysis are needed on Hunt-Crossley parameters selection
- Non uniform distribution of the tension inside the tether shall be investigated
- **Promising performances** for the proposed wave-based control law in both stabilization and release phase have been highlighted
- Considerable robustness of the wave-based control law have been confirmed
- Full tethered-net system in flight validation
- Higher fidelity tether shape and tension reconstruction
 from distributed sensors
- Net-target contact forces monitoring and reconstruction
- Higher fidelity target dynamics representation for control effectiviness in stack stabilization
- Different control laws and materials larger testing campaign

Clean Space Industrial day 24-26 October, ESA-ESTEC

Tethered-tugs dynamics and control verification and models validation by 0g experiments on parabolic flights

Michèle Lavagna, Paolo Lunghi, Vincenzo Pesce Politecnico di Milano, Dept. of Aerospace Science and Technologies, Italy