

WE GET IT DONE

VIMANCO: VIsion MAnipulation of Non-Cooperative Objects

Clean Space Industrial Days ESTEC 25 October 2017

K. Kapellos Konstantinos.Kapellos@trasysinternational.com

VIMANCO: Vision MAnipulation of Non Cooperative Object

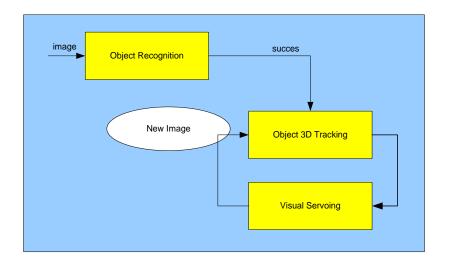
Objectives

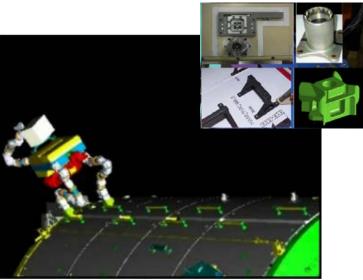
- Development of a system allowing:
 - Specification
 - Validation via simulation
 - Implementation & demonstration of Vision Based Control for the manipulation of *non-cooperative objects* in space applications
- Results
 - Vision Processing Library
 - Object Recognition
 - Object Tracking
 - Visual Servoing
 - Real-Time Controller / Emulator
 - Vision Simulator
 - Ground Control Station
 - Vision System
- ESA TRP activity
 - TRASYS
 - IRISA/INRIA Rennes
 - K.U. Leuven
 - Galileo Avionica

Plan

VIMANCO Approach

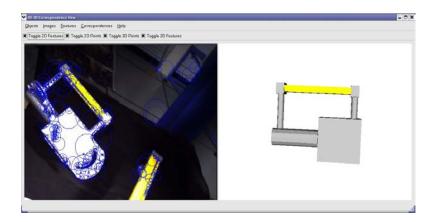
- Object recognition
- Visual Tracking
- Visual Servoing


- VIMANCO Utilisation & Results
 - Eurobot Testbed & WET / SSBB / MSSTM EGP


- Simulation environment
 - 3DROV
- Ground Control Station
 - DREAMS / 3DROCS

General Concept

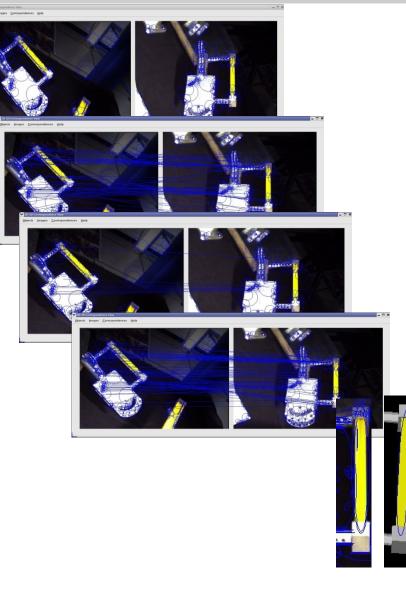
- Object Recognition
 - Identify in an image a particular object and determine its position when seen in new situations
- Object Tracking
 - Determine the position of a particular object in every image acquired by one or more cameras
- Visual Servoing
 - Control the motion of a dynamic system using the data provided by one or more cameras



Object Recognition

Proposed Approach

- Based on local invariant features
- Combines advantages of model-based and appearance-based approaches
- Feature consists of two parts:
 - Localization in the image: typically 2D coordinates of point, ellipse, ...
 - Description of the feature: feature vector e.g. window of grayscale values around a point
- Two stages process: off-line training (modeling) and on-line object recognition
- Same algorithm for modeling and recognition
- Off-line Training
 - Acquisition of a set of 'training' images under different viewpoints and illumination conditions
 - For each image:
 - Compute features and descriptions
 - Indicate correspondences between 2D and 3D
 - Result: 3D coordinates for extracted features
 - The set of the features, their description and their 3D position constitutes the model of the object



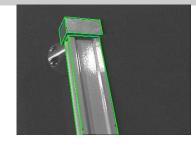
Object Recognition

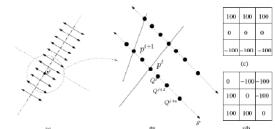
- On-line: for a target image
 - Compute features and descriptors using the same algorithm applied on the 'training' images
 - Match with the model image
 - Compute the consistent matches (P-RANSAC) and the corresponding camera pose
 - Using the computed pose, identify the new matches in the neighborhood of the projected 3D points (P-guided matching)
 - Verification step

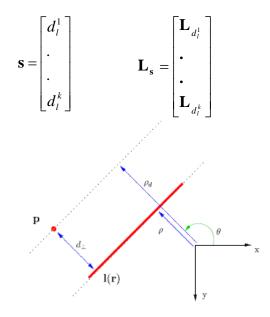
<u>Result</u>: the position of the object in the image used as input to the Object Tracking / Visual Servoing loop

Object Tracking

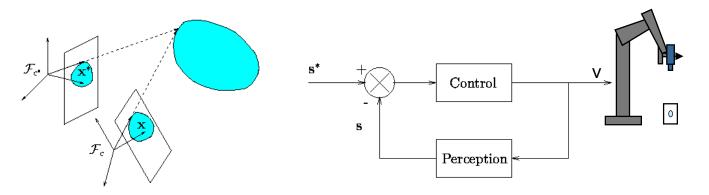
- Allows the localisation, at video rate, of a given object, by using for each frame:
 - A CAD <u>3D model</u> of the considered object
 - One (or more) current image(s) of this object acquired by one (or more) camera(s)
 - The previous localisation of the object in the image


- The localisation is based on:
 - A robust Virtual Visual Servoing (VVS) technique
 - A virtual camera is moved from the previously determined pose to a pose where the projected contour of the object matches the set of extracted points
 - At convergence, the current pose of the virtual camera gives the pose of the object
 - A robust estimator directly included into the VVS control law in order to correctly reject potential outliers
- Robustness with respect to <u>occlusions</u> and <u>light variation</u>




Object Tracking: Algorithm

- Acquisition of a new image or set of images following the configuration
- Computation of the forward projection of the CAD model
- Subsample the forward projection of the CAD model to obtain a set of point p^t. The position of each point is computed in the current image using the ME algorithm providing a set of p^{t+1} points that should belong to the current object contour.
- VVS: until convergence
 - Build the set of desired feature s
 - Computation of the interaction matrix Ls
 - Computation of the confidence in each data using the Mestimator and s. *The matrix D represents the confidence in each data.*
 - Computation of the new position of the virtual camera:
 - $v = -\lambda (D Ls) + (s s^*)$
 - if ||D * s|| < ε convergence is obtained
- At convergence the position ${}^{c}M_{o}{}^{t+1}$ is available to be used for the Visual Servoing



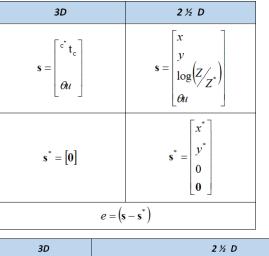
Visual Servoing

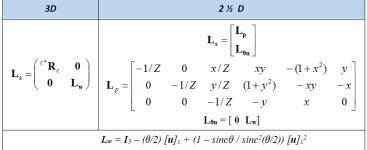
 Visual Servoing techniques consist of using the data provided by one or several cameras in order to control the motion of a robotic system

- Modeling
 - Design from the visual measurements *x(t)* a set of visual features *s* allowing the control of the desired degrees of freedom

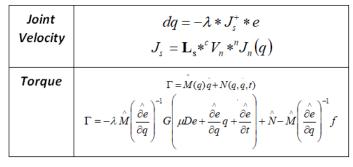
$$s = s(x, a)$$
 $\dot{s} = L(s, a, z) v$

- Control
 - Design a control law so that the features s reach a desired value s* defining a correct realization of the objective


$$\mathbf{v} = \mathbf{f}\left(\widehat{\mathbf{L}^+} \; (\mathbf{s} - \mathbf{s}^*)
ight)$$

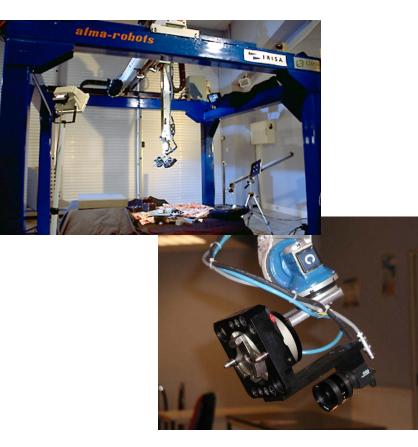


Visual Servoing: Algorithm


- Compute the s(t) of k visual information from the current camera position ${}^{c}\mathbf{M}_{o}(t)$
- Compute the s^{*} representing the desired value of s that guarantees the correct execution of the activity
- Compute the error e

Compute the interaction matrix L_s linked with s

Compute the robot control output


VIMANCO Validation

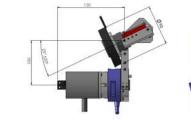
Use of internal facilities

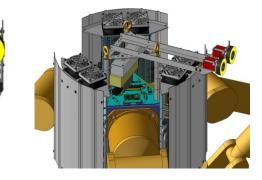
Eurobot Testbed

Eurobot WET Model at TAS-I premises

Eurobot Ground Prototype at ESTEC

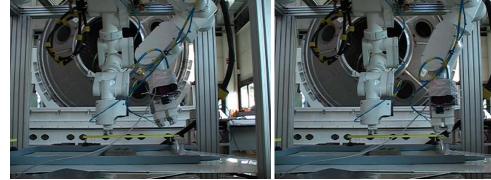
VIMANCO Validation

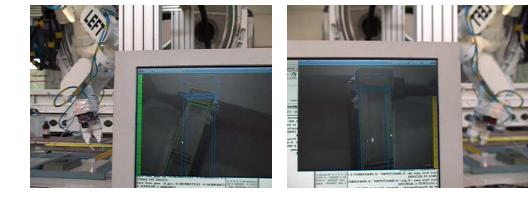

Use of internal facilities


Eurobot Testbed

Eurobot WET Model at TAS-I premises

Eurobot Ground Prototype at ESTEC




VIMANCO Validation

Use of internal facilities

Eurobot Testbed

Eurobot WET Model at TAS-I premises

Eurobot Ground Prototype at ESTEC

Simulation Environment

Design / Modeling

Robotic System

- Mechanical
- Thermal
- Power

Environment

- Atmosphere
- Orbiter & Timekeeping
- Terrain

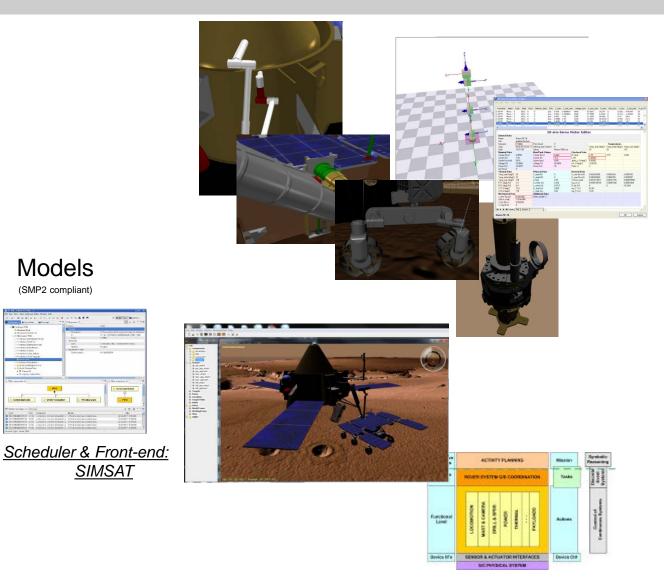
Generic Controller

- Actions
- Tasks
- Real-time impl.

3DROV Simulation Environment

Design / Modeling

Robotic System


- Mechanical
- Thermal
- Power

Environment

- Atmosphere
- **Orbiter & Timekeeping**
- Terrain

Generic Controller

- Actions
- Tasks
- Real-time impl.

Models

(SMP2 compliant)

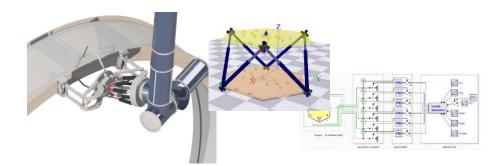
3DROV Simulation Environment

ExoMars - ROSEX **Design / Modeling Robotic System** Mechanical Thermal Power Environment Atmosphere **Orbiter & Timekeeping** Terrain R (R (B) (A) = = ACTIVITY PLANNING **Generic Controller** Centrel TO STATEN GR COORDAND Actions Tasks Real-time impl. Device Ch IC PORCH INSTRA

3DROV Simulation Environment

Design / Modeling

Robotic System

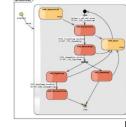

- Mechanical
- Thermal
- Power

Environment

- Atmosphere
- Orbiter & Timekeeping
- Terrain

PREDATOR

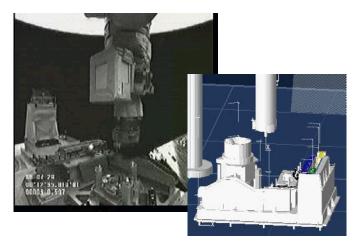
([104]) PREDATOR: ENVISAT Capturing Strategy using a Stewart platform



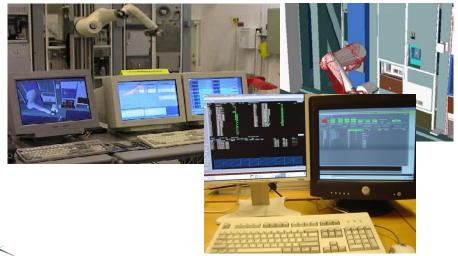
4	and a state	14	
No.	The second		1
		31	
Corole Corole			

Generic Controller

- Actions
- Tasks
- Real-time impl.



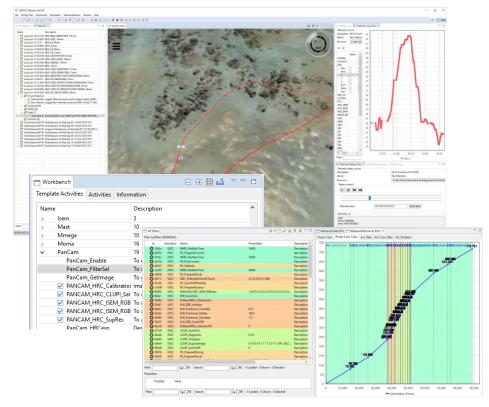
The arm moves the Gripper	
At reception of an external	
With the pinchers in contact	
With the pincher softly capturing	
At reception of the event indicating	
With the gripper rigidly grasping	
While de-tumbling the selected	



- DREAMS / 3DROCS
 - Prepare and Validate Activities
 - Operate in:
 - Telemanipulation
 - Interactive Autonomy, and
 - Autonomy operational modes
 - Situational Awareness
 - Operations assessment

JET / Europa

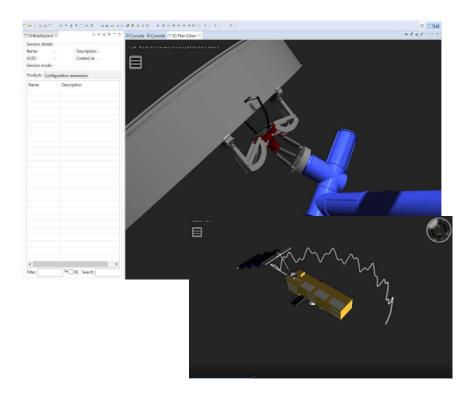
- DREAMS / 3DROCS
 - Prepare and Validate Activities
 - Operate in:
 - Telemanipulation
 - Interactive Autonomy, and
 - Autonomy operational modes
 - Situational Awareness
 - Operations assessment



- DREAMS / 3DROCS
 - Prepare and Validate Activities
 - Operate in:
 - Telemanipulation
 - Interactive Autonomy, and
 - Autonomy operational modes
 - Situational Awareness
 - Operations assessment

EXOMARS - ROCS

ROCS Milestones:


- CDR: completed
- V2: May 2018
- V3: Dec. 2019 - Launch: 2020

DREAMS / 3DROCS

<u>PREDATOR</u>

- Prepare and Validate Activities
- Operate in:
 - Telemanipulation
 - Interactive Autonomy, and
 - Autonomy operational modes
- Situational Awareness
- Operations assessment

Conclusion

- VIMANCO: Vision MAnipulation of Non Cooperative Object is a system allowing
 - Specification
 - Validation via simulation
 - Implementation
 of Vision Based Control for the manipulation of *non-cooperative objects* in space applications
- VIMANCO provides
 - Vision Processing Library
 - Object Recognition
 - Object Tracking
 - Visual Servoing
 - Real-Time Controller / Emulator
 - Vision Simulator
 - Ground Control Station
 - Vision System
- The PREDATOR Activity (HTR/TRASYS/NTUA):
 - Foresees a simulator for the ENVISAT LAR capturing with possibility to include Vision based control
 - Foresees a testbed where Vision based control could be tested

