

DEMISEABLE PROPELLANT TANKS Design and Test of Materials and Technologies

ITT AO/1-8301/15/NL/SW

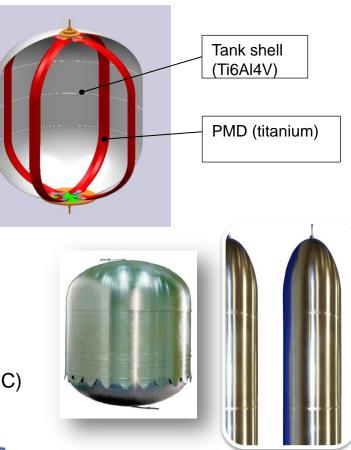
ESA CleanSpace Industrial Days

24.-26.10.2017

CONTENTS

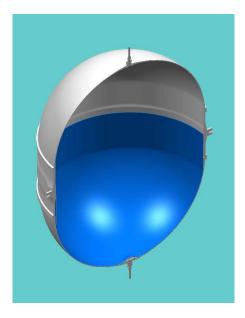
- 1. Scope of Technology
- 2. Preliminary Analysis
- 3. Proposed Tank Design
- 4. On-going Tests (for Trade-off Consolidation)
- 5. Conclusion

01 Scope of Technology



DEMISEABLE PROPELLANT TANK - Scope of Technology

- Applicability range
 - Priority 1: LEO platform medium size (100-200L, < Ø600mm)
 - Priority 2: LEO platform small size (37-50L, < Ø420mm)
- Actual Technology
 - Titanium tank (melting point ~ 1600°C)
 - Surface Tension PMD or membrane
 - ➔ Non-demiseable
- Proposed Demiseable Technology
 - Material: aluminium alloy (melting point ~ 600°C)
 - Surface Tension PMD or membrane


DEMISEABLE PROPELLANT TANK - Scope of Technology

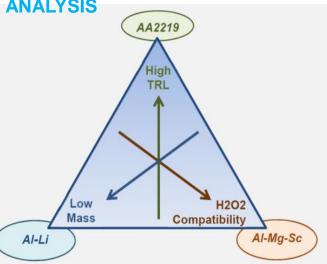
Tank Main Requirements

- Tank family: 100 to 200 litres
- Geometry: spherical/cylindrical (< Ø600mm)
- MEOP: 24bar
- Blowdown mode
- Propellant: Hydrazine (optional: green ADN/H2O2)

System level impacts

- Slight increase of tank mass (aluminum vs. titanium)
- In case of membrane tank, to allow passivation pyro-valves to vent gas and propellant into space or thruster firing for consuming the residuals.
- Tank demiseability assumes early tank separation from satellite structure (break-up altitude at 78km).

02 Preliminary Analysis



DEMISEABLE PROPELLANT TANK – PRELIMINARY ANALYSIS

Tank shell material

- AA2219 provides the highest TRL for the application and a good specific strength
- Al-Li alloys (e.g. 2195, 2055) provide the highest specific strength (lowest tank mass). The compatibility to propellants is still to be investigated
- AI-Mg-Sc alloy (e.g. 5028) provide promising compatibility to H2O2 and a good specific strength

	Propellant tank launcher heritage	Material	Weld technique	Propellant	TRL
•	Ariane 5 EPS	2219-T8	TIG	NTO / MMH	TRL9
•	Vega AVUM+	2219-T8	TIG	NTO / UDMH	TRL6

→ Due to the heritage available in the launcher domain, the use of 2219 is recommended for LEO propellant tanks

Piping Interface

The specified pipe interface material is titanium. This means that a transition joint must be foreseen with the aluminium tank.

- <u>Bolted joint</u>: multiple seals needed to ensure tightness over 10 years
- <u>Bimetallic transition joint</u>: AA6082-to-Ti6Al4V being developed in Europe (~TRL6) using RFW joining technique.
- <u>Rotary friction welded joint</u>: applications of RFW of AI-Ti already developed in Europe (TWI and IWS) and feasibility of AI-Ti joints already performed at ESA.

→ Due to its advantages in term of masses and tightness performance, the use of a bimetallic transition joint (RFW) is recommended

Propellant Delivery System

- <u>Elastomeric membrane</u>: PTFE or EPDM (both materials possible). Qualification of PTFE for satellite environment (radiation, thermal) to be performed.
- <u>Surface tension device</u>: Aluminium PMD (simple design assumed, as existing for titanium tanks).

➔ Both elastomeric membrane and surface tension PMD are deemed appropriate for LEO demiseable tank

- **DRAMA** Analyses
 - **Material Assumptions:**
 - T(melting) =
 - Cp (average) =
 - Emissivity =
 - Heat of melting =
 - Tank Masses:
 - Volume 104L:
 - Volume 200L:

977 J/Kg-K 0.5 385 kJ/kg

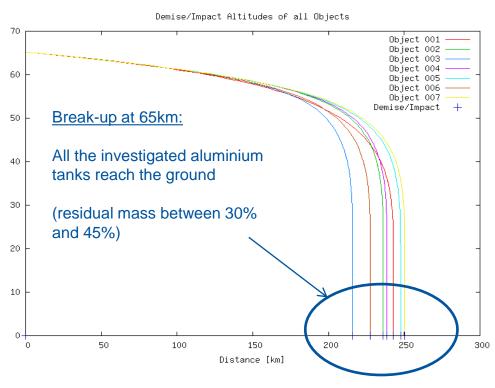
866 K (nominal) / 916 K (worst case) (variation of $\pm 10\%$ also evaluated) $(\varepsilon = 0.3 \text{ also evaluated})$ (variation of $\pm 10\%$ also evaluated)

varying between 5,7kg and 9,0kg* varying between 12,4kg and 19,7kg*

* Pending on safety factors and alloy considered

- **Re-entry Conditions**
 - Nominal:
 - Worst case:

Break-up at 78km (V=7.58 km/s) Break-up at 65km (V=6.71 km/s)



DRAMA Analyses

Results:

- The analysis performed with DRAMA indicates that the aluminium tanks always demise for a break-up altitude of 78km, however none of the alloys is found to demise for break-up altitude of 65 km.
- The choice of aluminium alloys, the tank size (within 100L - 200L) and the safety factors used for dimensioning have little influence on the results. Variations on material properties (melting point, Cp, heat of fusion, emissivity) and the different tank masses have a negligible impact on demiseability when compared to the break-up altitude.
- Titanium tanks do not demise at all

03 Proposed Tank Design

DEMISEABLE PROPELLANT TANK - Proposed Tank Design

	Demiseable Tank - Master Trade-off	Tank 1a	Tank 1b	Tank 2a	Tank 2b	Tank 3a	Tank 3b
	Material	2219	2219	5028	5028	2060	2060
	Condition	T8	Т8	H116	H116	T8	Т8
	Weld process	TIG	TIG	tbd	tbd	tbd	tbd
	Forming process	forging	forging	tbd	tbd	tbd	tbd
	Propellant Delivery System	PED	PMD	PED	PMD	PED	PMD
	Mounting	equator	equator	equator	equator	equator	equator
	Pipe I/F transition	bolted joint (*)	bolted joint (*)	bimetal	bimetal	bimetal	bimetal
Weight	Criteria	Evaluation	(Max: 5 / Min: 1)				
10	Demiseability	4	4	4	4	4	4
10	Metal propellant compatibility - hydrazine	4	4	2	2	3	3
6	Metal propellant compatibility - green ADN	2	2	2	2	2	2
4	Metal propellant compatibility - green H2O2	1	1	3	1	1	1
10	PMD wettability / PED compatibility - hydrazine	5	5	5	5	5	5
6	PMD wettability / PED compatibility - green ADN	2	3	2	3	2	3
4	PMD wettability / PED compatibility - green H2O2	2	1	2	1	2	1
5	Dry Mass	3	3	3	3	5	5
5	Development cost	4	4	2	2	2	2
5	Development time	4	4	2	2	2	2
5	Development risks	4	4	2	2	2	2
10	Recurring cost	4	4	3	3	3	3
5	Material procurement (lead time, etc.)	4	4	4	4	3	3
	Score	301	303	249	243	256	258

DEMISEABLE PROPELLANT TANK - Proposed Tank Design

The trade-off shows that the following areas require to be investigated:

- Long term compatibility (and SCC) of all Aluminium alloys with hydrazine
- Compatibility of Al-Mg-Sc alloy (5028) with hydrazine
- Compatibility of PED material with hydrazine and green propellants
- Wettability of PMD material with hydrazine and green propellants
- Aluminium pipe transition joint

→Therefore the next development activities regarding demiseable tank technologies should focus in priority on the above mentioned areas.

04 On-going Tests (for Trade-off Consolidation)

DEMISEABLE PROPELLANT TANK - On-going tests (for trade-off consolidation)

Hydrazine Compatibility Test (1 month @ 71°C)

Material	Weld techni que	Reference (w/o immersion)	Immersion in Hydrazine		est
				Compatibility test	Additional test
5028	Base material	(5) tensile sample	(5) tensile sample	 Visual insp. Mass change Prop. 	• Tensile
6082 / 2219	Manual TIG	(7) welded pipe	(7) welded pipe		 Leak/proof Tensile
6082 / Ti6Al4V	RFW	(7) welded pipe	(7) welded pipe	analysisCatalytic effect	 Microsectio n
2219	Base material	(3) contact angle	(3) contact angle		
2060	Base material	(3) contact angle	(3) contact angle	 Visual inspection Contact angle measurement 	
5028	Base material	(3) contact angle	(3) contact angle		

THIS DOCUMENT AND ITS CONTENTS ARE PROPERTY OF ARIANEGROUP. IT SHALL NOT BE COMMUNICATED TO ANY THIRD PARTY WITHOUT THE OWNER'S WRITTEN CONSENT | ARIANEGROUP GMBH - ALL RIGHT'S RESERVED.

DEMISEABLE PROPELLANT TANK- On-going tests (for trade-off consolidation)

- Thermophysical Test

Material	Weld technique	Test		
2219	Base material	Density		
2060	Base material	Specific heat CpT(melting)		
5028	Base material	Heat of Melting		

DEMISEABLE PROPELLANT TANK - Conclusions

- The replacement of Titanium with an Aluminium alloy is confirmed to be the most promising approach given the major impact in terms of tank demiseability.
- The break-up altitude was found to be the major parameter to drive demiseability, much more than the choice of the aluminium alloy.
- In order to minimize development risks and cost, the recommended approach is to use the conventional 2219 alloy technologies, available from launchers, and to extend it to LEO platform application. It is expected that the mass penalty (4kg heavier than titanium) is acceptable when compared to the necessity of a controlled re-entry.
- Innovative tank technologies, involving AI-Li or AI-Mg-Sc aluminium alloys, may be developed and introduced later on to optimize the performance.

