

Technology building blocks and ongoing activities for spectral sensing for relative navigation

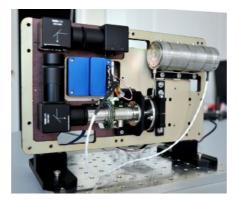
> Marco Esposito Head of Remote Sensing Business Unit cosine Measurement Systems m.esposito@cosine.nl

> > Clean Space Industrial Days ESA ESTEC 25 Oct 2017

Agenda

- Brief company intro
- Technology building blocks
 - Optics
 - Sensors and ROE
 - Backend electronics
 - Algorithms and processing software

Ongoing activities


- Spectral imager VNIR IOD
- TIR channel breadboarding
- Other spectral channels

Brief company intro

develops and builds measurement systems

Inspection systems for Medical, Oil/Gas, Food & Pharma

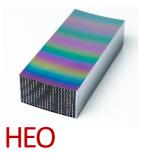
Remote sensing systems Space and air-borne spectral cameras for Agriculture, Environment and Disaster Management

High energy optics X-ray and gammaray optics for Astronomy, Material Analysis and Health

Ces

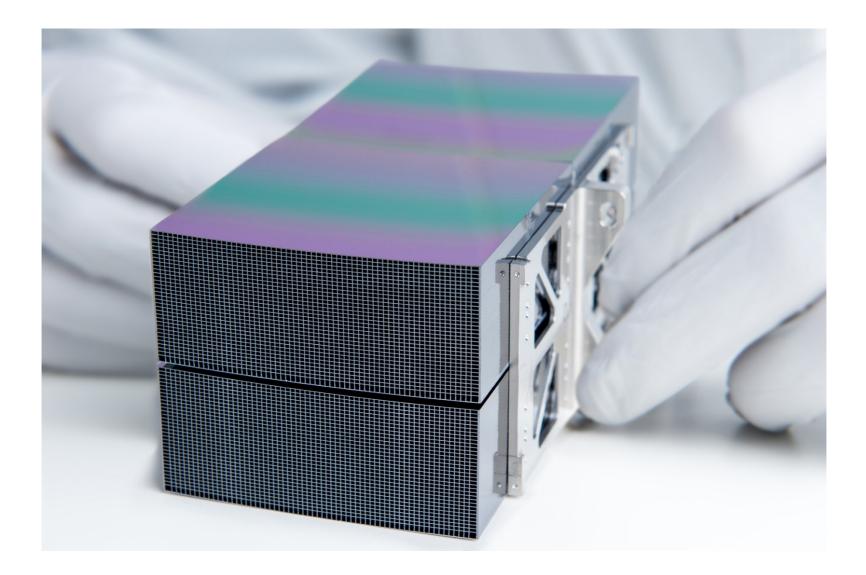
Core business

- Develop new technology for & with strategic customers
 - Space and non-space customers, science, energy etc
 - ESA, NASA, Shell, Heerema, Nissin, ...
 - Working with universities, institutes, high-tech SME, also in H2020, STW, etc
- Use the technology to build custom measurement systems
 - Spectroscopic imaging, IR to gamma-ray
 - Generic core, many applications
- Generate recurring business for a specific product-market combination through spin-offs
 - 3D-one BV for multi-camera spectral imaging hardware
- hardware a **COSINE**
 - condi food BV for inspection cameras for food quality and safety
 - cosine High Energy Optics BV for Silicon Pore Optics based products



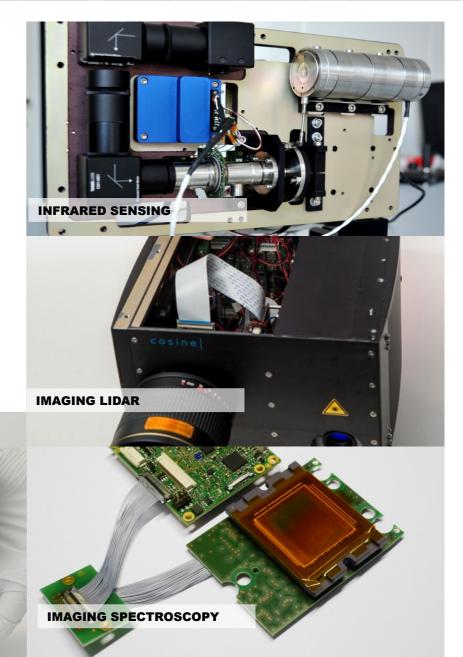
condi food

Spectral camera for relative navigation


Athena Silicon Pore Optics Mirror Modules

~ 1000 mirror modules ~ 125,000 mirror plates ~ 10,000,000 pores \sim 500 m² polished area

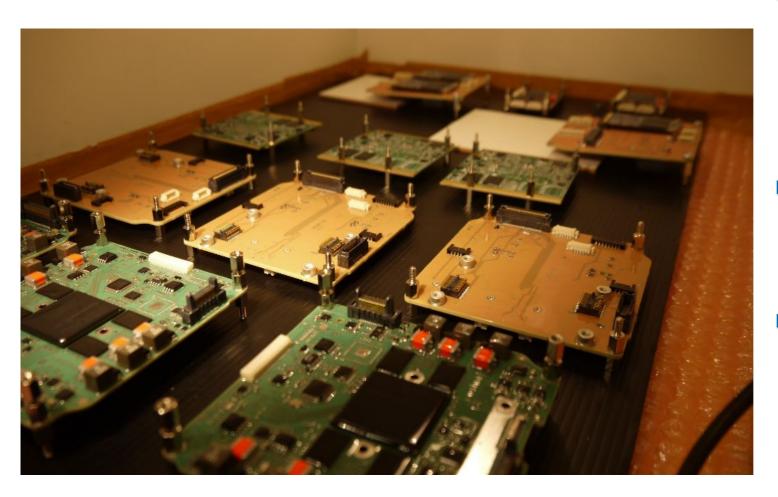
esa



Final Product – a Silicon Pore Optics Mirror module

Technology Lines for small instruments

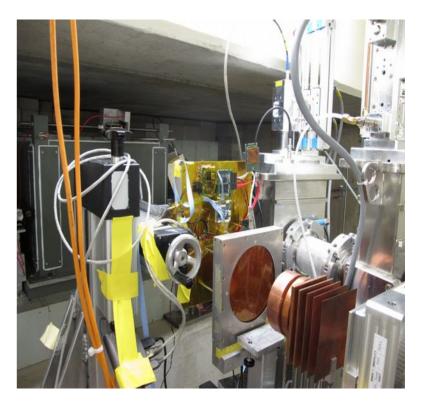
- Five technology lines are leading developments at cosine
 - Hyperspectral imaging
 - Infrared sensing
 - Imaging lidar
 - Imaging spectroscopy
 - Imaging polarimetry
- These technologies are exploited in commercial products and commercial service missions


IMAGING POLARIMETRY

HYPERSPECTRAL IMAGING

Technology building blocks

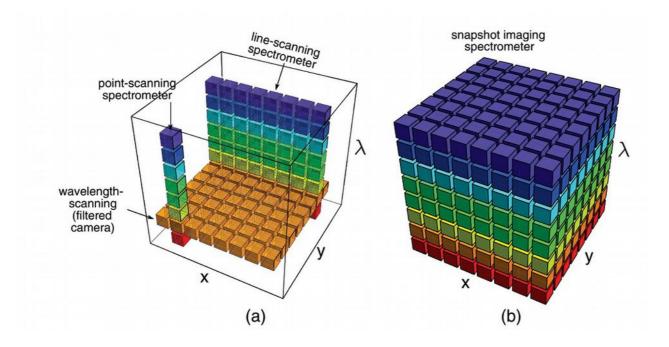
Generalized electronics



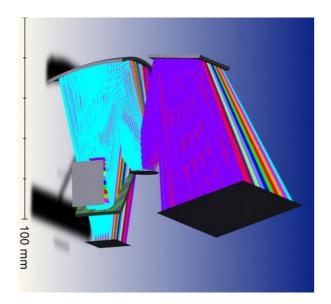
- Developed for handling multiple camera heads
 - Multiple spectral channels
- ECSS tailored for commercial EO applications
- Hibrid approach
 FPGA, CPU GPU for
 high processing
 power and reliable
 control
- Hot and cold swappable high capacity memories

Electronics testing

- Developed at cosine and withstand incremental design and production iterations
- 3 proton irriadiation testing campaigns performed at PSI with two design iterations
- Electronics has been separately shocked and vibrated at qualification levels



- Plug and play telescope
 - Enabling series production
- First off-axis 4 mirror system with very large field-of-view in both directions
- Rugged system
- Large 12MPx focal plane array
- Flexible front end for different spectral channels


- Image two spatial and one spectral dimension with a 2D focal plane array
 - Point-scanning spectrometer (whiskbroom sensor)
 - Line-scanning spectrometer (pushbroom sensor)
 - Wavelength-scanning spectrometer (staring sensor)
 - Snapshot imaging spectrometer

Multi spectral channels

- Baseline
 - 50 bands in the VNIR
- Additional bands under development
 - UV
 - SWIR
 - TIR

25 Oct 2017

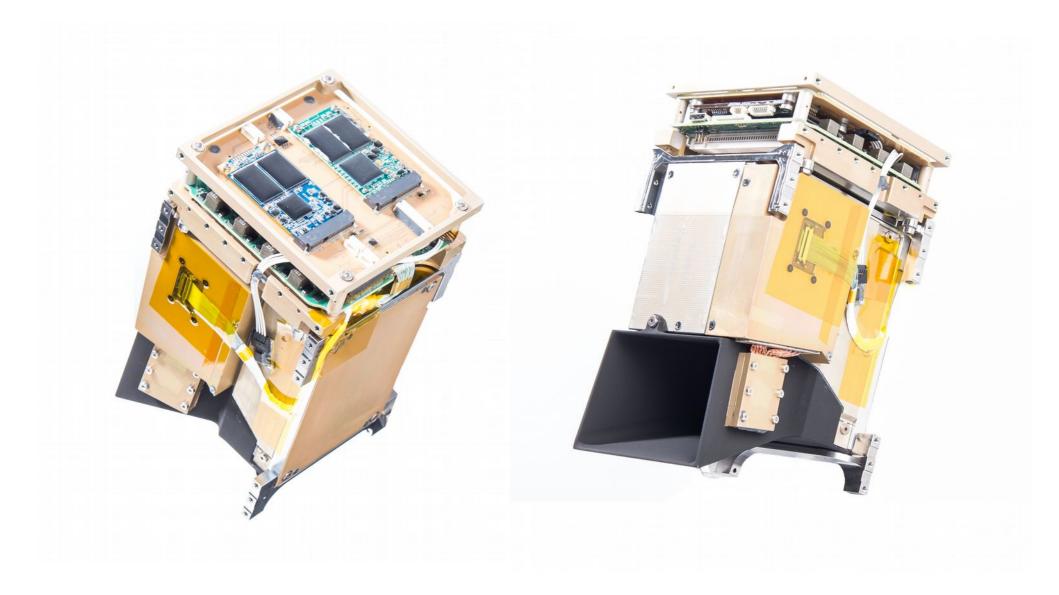
esa

Panorama – large fields and broad spectral range

- 4 spectral imagers with 2 channels each
- Total of 8 channels spanning from 250 nm to 14 um
- Minimum mass of 6 Kg

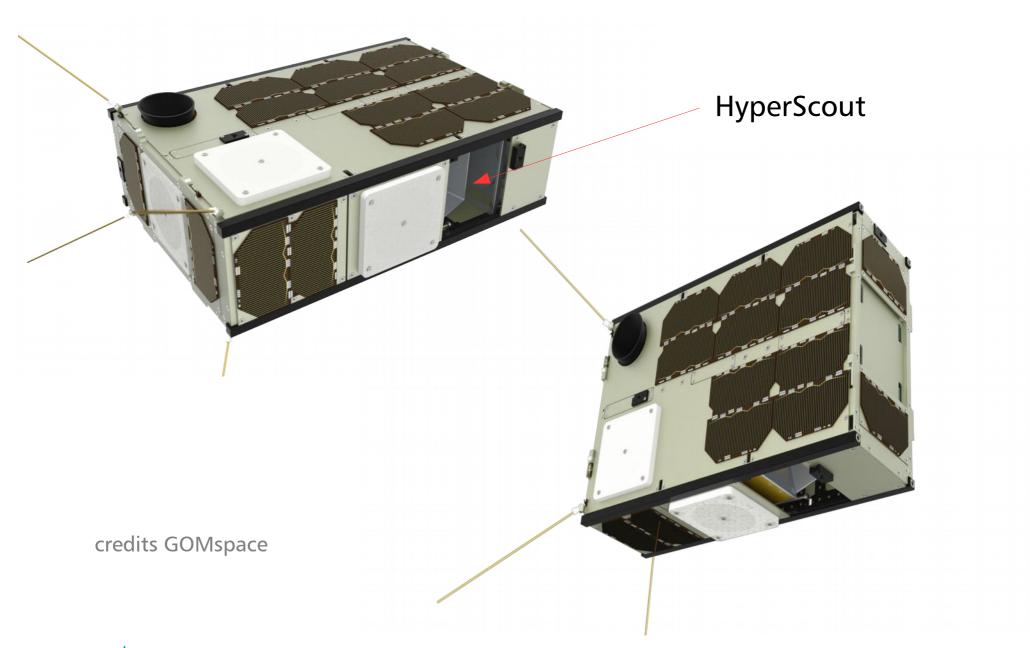
Ongoing activities: HyperScout IOD

HyperScout Flight Model delivered in March 2017

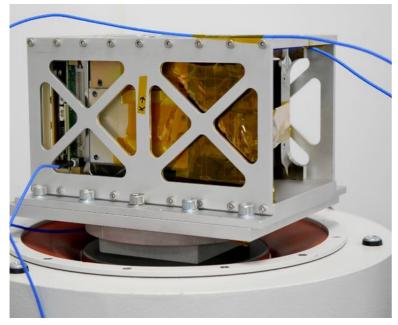

HyperScout FM for GOMX-4B flight in February 2018

esa

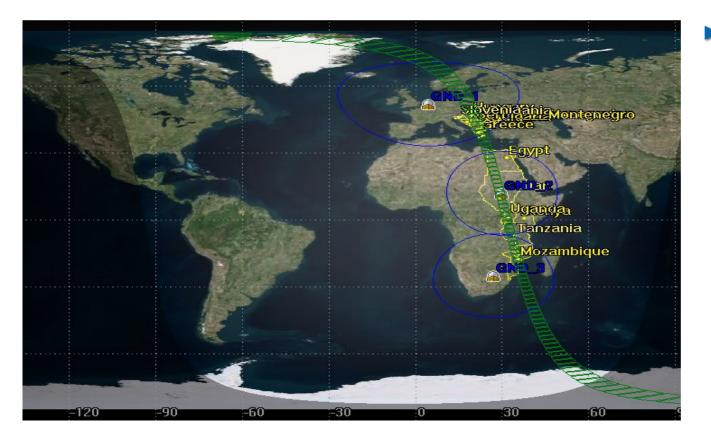
C


HyperScout FM for GOMX-4B flight in February 2018

esa

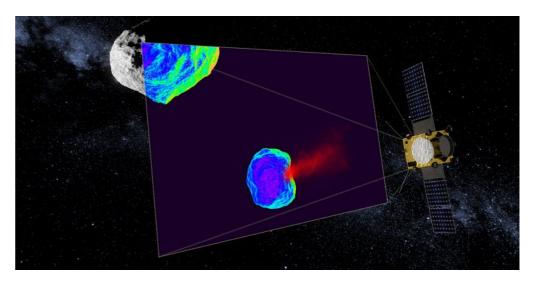

eesa

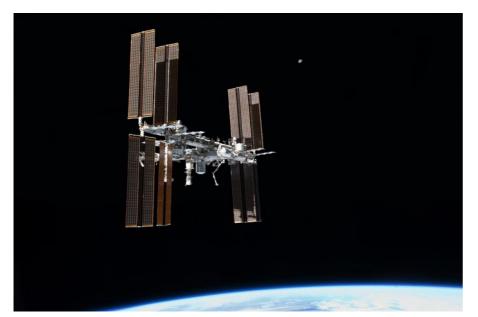
HyperScout[®] maiden flight on GOMX-4B


HyperScout environmental campaign successfully passed

- Pre-delivery environmental campaign executed at cosine
- Vibration testing on three axes
- TVAC chamber
- Optical check at different temperatures
- Further testing has been performed as part of the GOMX-4B satellite campaign

One Earth Revolution - Multiple Applications


- Multiple applications
 - Mozambique (fire hazard, floods)
 - Tanzania (fire hazard, floods)
 - Uganda Kenya (fire hazard, change detection)
 - Sudan (droughts)
 - Egypt (floods, droughts, crops, change detection)
 - Greece (fire hazard, change detection)
 - Balkan regions (floods, crops)

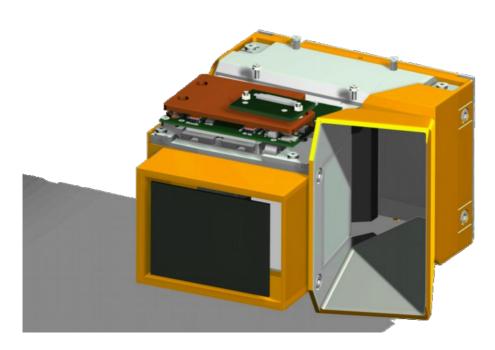

Ongoing activities: Spetral imager IR channels BB

Multispectral camera for multi-mission scenario

Scenario	Test description		
RDV Envisat	Different phases: • From 900 m to 800 m • From 500 m to 400 m • From 300 m to 200 m • From 100 m to 75 m • Hold orbit at ~50 m • Few meters from the target		
RDV ISS	Hold point at \sim 280 m		
D&L	From 2 Km to landing		

eesa

Thermal Infrared Imager (TIRI) for AIM

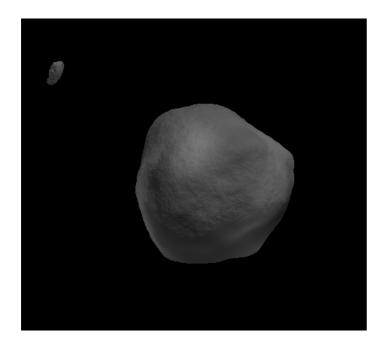


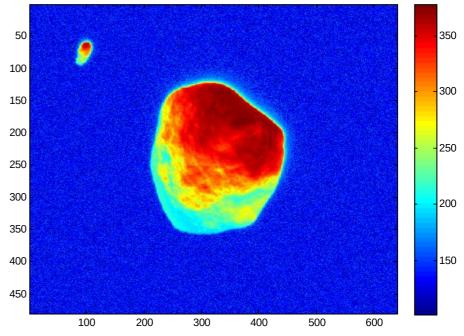
- cosine developed the TIR imager (TIRI) for the AIM mission under ESA GSP project.
- TIRI is a dual purpose instrument:
 - Scientific instrument: characterization of the asteroid surface;
 - Navigation camera: aid to spacecraft navigation.
- Line spectrometer
 - 5 K temperature retrieval accuracy for LST higher than 100 K.
 - >5 spectral bands
- NavIR[™]: navigation camera
 - 2D field of view
 - foV comparable to the VIS camera

- ► NavIR[™]
 - HyperScout[®] tailored for navigation in the Thermal InfraRed;
 - Developed under an ESA GSTP contract for VNIR operation;
 - Fully reflective architecture.

Parameter	Value	
Instantaneous field of view [mrad]	0.41	
Field of view [deg]	15 x 11.3	
Maximum radial field of view [deg]	9.36	
Focal length [mm]	41.25 mm	
Aperture diameter [mm]	10 mm	
F-number	4	
Hyperfocal length [m]	5.45 at 8 μm 3.11 at 14 μm	
Sensor size [px ²]	640 x 480	
Pixel size [µm ²]	17 x 17	
Ground Sampling Distance [m]	16.4 at 40 km 4.1 at 10 km 0.82 at 2 km	
Spectral range [µm]	8 - 14	
Spectral resolution [µm]	6	

esa





NavIR[™] imagery simulation

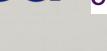
- Images of Didymos, as acquired by NavIR[™], have been simulated.
 - Spatial variations of emissivity have been simulated.
 - Different surface thermal inertia levels have been simulated, accounting for different surface rocks configurations
 - Realistic surface temperature distributions have been obtained.
 - Synthetic images have been used as input for navigation simulations.

Temperature distribution with background noise removal (K)

NavIR[™] navigation performance

- The S/C relative state with respect to the asteroid is determined using NavIR[™] observations of the target body.
- Two image processing algorithms are used:
 - Centre of brightness detection (during approach and long distance observation)
 - Unknown landmark tracking (during detailed characterisation (\sim 10 km distance) and asteroid descent.
- Performance are comparable with those of a VIS camera, irrespective of the surface thermodynamical properties (emissivity – thermal inertia)
 - In the table, performance figures for the landmark tracking algorithm, used during detailed characterisation phase.

Thermal inertia level	Position error [m]	Position error st. dev [m]	Velocity error [cm/s]	Velocity error st. dev. [cm/s]
Zero	32.1	31.9	1.4	2.2
Low	35.3	46.0	0.4	2.9
High	33.1	41.6	0.1	2.9



Additional channels

- Project started to add TIR channel to the HyperScout telescope
- SWIR already tested in the lab, first picture of cosine parking lot below
- UV channel under development

www.hyperscout.nl

esa Netherlands Space

cosine

Oosteinde 36 2361 HE Warmond The Netherlands Tel. +31 71 528 49 62 Fax. +31 71 528 49 63 info@cosine.nl

5

HyperScout

0