

ESA - Frame Contract on Materials Testing

Alternative pre-treatments to aluminium Replacements for Hexa Jent Chromate Conversion Coatings

www.isq-group.com

900

Clean Space Industrial Days

25 October, 2017

PROJECT BACKGROUND

www.isq-group.com

➢ High strength aluminium alloys are widely employed in aerospace applications for both structural and non-structural applications. Key structural components such as launcher stages and sandwich panels are examples of applications. Aluminium alloys are selected for their high strength-to-weight ratios but the improved strength usually compromises the corrosion resistance of the material.

> Specific environmental conditions may trigger corrosion and therefore these alloys require additional protection.

Chromium-VI based coatings have been really an effective solution but their use has been prohibited by EU since 2007 due to their carcinogenicity and negative environmental impact.

In the European automotive and electrical engineering industry, replacement of classical chromate process by chromium (VI)-free alternatives has been finished.

> In the aeronautic and space industry a sunset date of September 21st-2017 has been set for hexavalent chromium. The Cr-VI based process is maintained in full scale in aerospace and military industry¹.

➢ Significant research has been conducted to replace the Chromium (VI) based surface treatments and some commercial substitute systems are now available and needs to be tested to evaluate their performance and to know how they comply with the required specifications.

¹**POKORNY, P. TEJ, P. SZELAG, CHROMATE CONVERSION COATINGS AND THEIR CURRENT APPLICATION,** ISSN 0543-5846, METABK 55(2) 253-256 (2016), UDC – UDK 669.268:621.793:542.8:669.715:615.372=111

ESA contracted ISQ to conduct a study focusing on a selection of alternative surface treatments which are sourced from European vendors.

> The objective is to select the most suitable pre-treatment for the required applications and to determine their relative performance and efficiency.

> Alodine 1200 samples will be used for baseline in all tests.

➤ The candidate surface treatments have been evaluated in terms of protection when used alone on different aluminium alloy substrates. In the last phase primer and topcoat will be also applied onto the conversion coating.

www.isq-group.com

4

Table 1 – Aluminium alloys, temper condition and alloying elements.

Aluminium Alloy	Temper	Specifications	Major alloying elements
AA2024	Т3	AMS-QQA250/4, AMS4037	Cu
AA2024	T81	AMS-QQA250/4	Cu
AA6061	Т6	AMS-QQA250/11, AMS4027	Mg, Si
AA7075	T73	AMS-QQA250/12, AMS4078	Zn
AA5083	H111	AMS- QQ-A-250/6 5083, AMS 4056	Mg

Table 2 – Summary of chromium (VI)-free conversion coatings.

•	Conversion Coating	PreCoat A32	ALUPRET 300	Nabural 33	SOCOSURF TCS / PACS	SURTEC 650V	Pre-treatment based on Vanadate	Bonderite M-NT 65000
	Chemistry (from MSDSs)	Trivalent chromium	Trivalent chromium	Trivalent chromium	Trivalent chromium	Trivalent chromium	Sodium vanadate	Trivalent chromium
• •	Supplier	AD International B.V., The Netherlands	SPCB, France	NABU Oferflachen- technik, Germany	Socomore, FRANCE	SurTec, FRANCE	SmallMaTek, Portugal	HENKEL, Germany

www.isq-group.com

Phase 1 – Pre-Screening

Pre-screening of selected pre-treatments on five different substrates with special attention to AA2024 (Salt spray testing (ASTM B 117) for 168 hours)

5

. .

Phase 2 – Extended Testing

Four surface treatments (that performed better in Phase 1) were tested:

- Metallurgical coating evaluation
- Salt spray testing (ASTM B 117) for 168 hours + 336 hours duration
- Resistivity Check (e. g. MIL-DTL-81706)
- Humidity testing (ASTM D2247)
- Thermal cycling (ECSS-Q-ST-70-04C)

Phase 3 - Long Term Environmental Test Programme Based on the results of Phase 2, three surface treatments will be exposed, alone and with primer/topcoat in ESA facilities in Kourou, French Guiana

www.isq-group.com

6

Phase 1 – Pre-Screening - (Salt Spray testing (ASTM B 117) for 168 hours)

- Only **Precoat A32** and **Socosurf TCS/PACS** passed the minimum 168 hrs requirement for all the alloys including both AA2024 T3 and T81.
- Surtec 650V and Bonderite M-NT 65000 passed the minimum 168 hrs requirements for AA7075- T73, AA6061-T6 and AA5083-H111 and failed for both AA2024-T3 and T81.
- The T81 showed more intense corrosion signs than the T3 in all the pretreatments, for AA2024.

Precoat A32 and Socosurf TCS/PACS are the most promising chemical conversion alternatives for all the aluminium alloys, including AA2024.
 Surtec 650V and Bonderite M-NT 65000 could be also candidates for replacement if submitted to optimization for the AA2024.

www.isq-group.com

IN PROGRESS Phase 2 - Extended Testing

• The four best surface treatment options, **PreCoat A32**, **Socosurf TCS/PACS**, **Surtec 650V** and **Bonderite M-NT 65000**, were applied on five substrates;

Test	Conditions	Test Method	Evaluation criteria
Salt Spray	504 h	ASTM B117	MIL-DTL-5541
Resistivity Check	Before and after SST	MIL- DTL-81706	MIL-DTL-5541
Humidity	3500 h	ASTM D2247	MIL-DTL-5541
Thermal Cycling	4 Steps in specific conditions	ECSS Q ST 70 04C	Acceptance criteria shall be defined (beforehand)
Metallurgical coating evaluation	before and after testing		

Table 3 -Test methods and evaluation criteria.

PHASE 2 – EXTENDED TESTING

www.isq-group.com

-0

8

Table 4 - Test Plan.

Test	Test duration (hrs)	Samples dimension (cm)	Number of samples for each combination alloy / conversion coating
Salt spray	504*	25.4 x 7.62	5
Resistivity Check	N/A		ne panels for salt spray, before er testing
Humidity	3500**	25.4 x 7.62	5
Thermal Cycling	Minimum 100 thermal cycles***	25.4 x 7.62	5

Notes:

0

* test panels will be inspected every 168 hours

** Test panels will be inspected every 168 hours (or every 336 hrs towards the end of testing, depending on the results).

*** To be defined with ESA

PHASE 2 – EXTENDED TESTING

www.isq-group.com

9

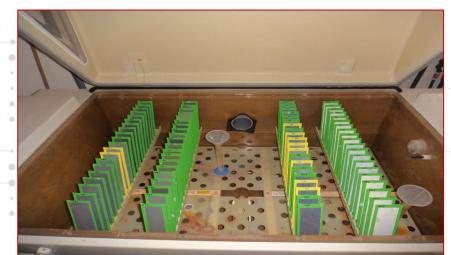
Panel Processing

All the substrate panels have been submitted to the following sequence:

- Cleaning
- Water rinsing
- Deoxidizing
- Water rinse
- Treating with the conversion coating solution
- Water rinsing
- Drying

The products (cleaner, deoxidizing, desmutting and conversion solution) and the respective application parameters (concentration, temperature, time, etc.) were specified by each one of the vendors that applied the complete sequence in their own facilities.

Note: Alodine 1200 and Bonderite M-NT 65000 (supplied by HENKEL) were applied by ISQ, according to the respective application instructions.



- 5 test panels in each configuration subjected to a 5% NaCl neutral salt spray test (ASTM B117) with a pH between 6.5 and 7.5 for 504 hrs.
- Panels inspected every 168 hrs (number of spots or pits recorded).
- Areas within 5 mm from the edges, identification markings and holding points were excluded from inspection and loss of colour was not a cause for rejection.

Evaluation criteria for all tests taken from MIL-DTL-5541 [1] as follows:

"After 168 hrs of exposure there should be no more than 5 isolated spots or pits, none larger than 800 μm in diameter, per test specimen."

Figure 1 – Salt spray chamber, Q-FOG.

PHASE 2 – EXTENDED TESTING – Salt Spray Test results

www.isq-group.com

	1 6 6 6 6 6 6	Pit count hours after NSS				
Pre-treatment	Substrate	168h	336h	504h		
	AA2024-T3	2-3	3-4	4-6		
	AA2024-T81	3-4	4-5	5-8		
Alodine 1200	AA6061-T6	0-3	2-3	3-4		
Alodine 1200	AA7075-T73	0-0	1-2	2-3		
	AA5083-H111	0-1	0-1	1-3		
	AA2024-T3	2-4	5-7	10-15		
	AA2024-T81	3-5	6-8	10-15		
Precoat A32	AA6061-T6	0-0	1-4	2-4		
	AA7075-T73	0-0	1-2	2-3		
	AA5083-H111	2-3	3-4	3-5		
	AA2024-T3	1-3	2-4	5-6		
	AA2024-T81	2-4	3-5	5-7		
Socosurf TCS/PACS	AA6061-T6	0-0	1-2	2-3		
	AA7075-T73	0-0	1-2	2-3		
	AA5083-H111	0-1	1-2	3-5		
	AA2024-T3	4-6	6-10	10-13		
	AA2024-T81	4-6	5-7	10-13	F 0	
Surtec 650V	AA6061-T6	0-0	1-3	2-4	• •	
	AA7075-T73	0-3	2-4	3-7	D.	
	AA5083-H111	1-2	2-3	5-7	0	
	AA2024-T3	10-13	15-20	21-25	0	
	AA2024-T81	15-18	21-27	25 - 35+		
Bonderite M-NT 65000	AA6061-T6	0-1	4-7	5-8		
	AA7075-T73	0-3	4-5	5-6		
	AA5083-H111	1-3	2-5	5-8		

No corrosion
Few corrosion
Medium corrosion
High corrosion

11

Table 5 – Summarised pit count(minimum and maximum)after168, 336 and 504 hours of salt spraytest on all substrates with every pre-treatments.

PHASE 2 – EXTENDED TESTING – Salt Spray Test results

www.isq-group.com

 Table 6 – Summarised results obtained after 504h of salt spray test .

12

	Chemical Conversion Coating Pre-treatments						
Aluminium Alloy	Alodine 1200	Precoat A32	Socosurf TCS/PACS	Surtec 650 V	Bonderite M-NT 65000		
AA2024-T3	No/ little evidence of corrosion	Few density corrosion spots/pits	Few density corrosion spots/pits, barely visible to eye	Medium density corrosion spots/pits	Few-medium density corrosion spots/pits; evidence of pre-treatment breakdown		
AA2024-T81	No/ little evidence of corrosion	Few-medium density corrosion spots/pits	Few density corrosion spots/pits, barely visible to eye	Medium density corrosion spots/pits	Medium-high density corrosion spots/pits; evidence of pre-treatment breakdown		
AA6061-T6	No/ little evidence of corrosion	No/ little evidence of corrosion	No/ little evidence of corrosion	Few density corrosion spots/pits	Few density corrosion spots/pits; evidence of pre- treatment breakdown		
AA7075-T73	No/ little evidence of corrosion	No/ little evidence of corrosion	No/ little evidence of corrosion	Few density corrosion spots/pits	Few density corrosion spots/pits; evidence of pre- treatment breakdown		
AA5083-H111	No/ little evidence of corrosion	No/ little evidence of corrosion	No/ little evidence of corrosion	Few density corrosion spots/pits;	Few density corrosion spots/pits		

PHASE 2 – EXTENDED TESTING – Thermal Cycling Test www.isg-group.com

 Panels exposed to number of thermal cycles under vacuum conditions, oscillating within a defined temperature range to evaluate the resistance to effects such as cracking or fracture of materials and/or surface treatments.

13

Table 7 – Thermal cycling test parameters.

	Step 1	Step 2	Step 3	Step 4
	10 cycles in	80 cycles in	10 cycles in	
	vacuum	ambient	vacuum	leath armal stan
T _{max}	100 (+5/-10) ºC	100 (+5/-5) ºC	100 (+5/-10) ºC	Isothermal step 150ºC in high
T _{min}	-100 (+5/-5) ºC	-100 (+5/-5) ºC	-100 (+5/-5) ºC	vacuum for 145
T _{CR}	1 ºC/min	5 ºC/min	1 ºC/min	hrs
T _{dwell}	>5 min	>5 min	>5 min	

- The method is adapted to the steps included in Table 4, according to ESA requirements and due to limitations in achieving a higher vacuum than 10⁻³ Pa.
- Step 4 in additional finish on some samples to get an indication of the surface treatments resistance to high temperature in high vacuum condition.

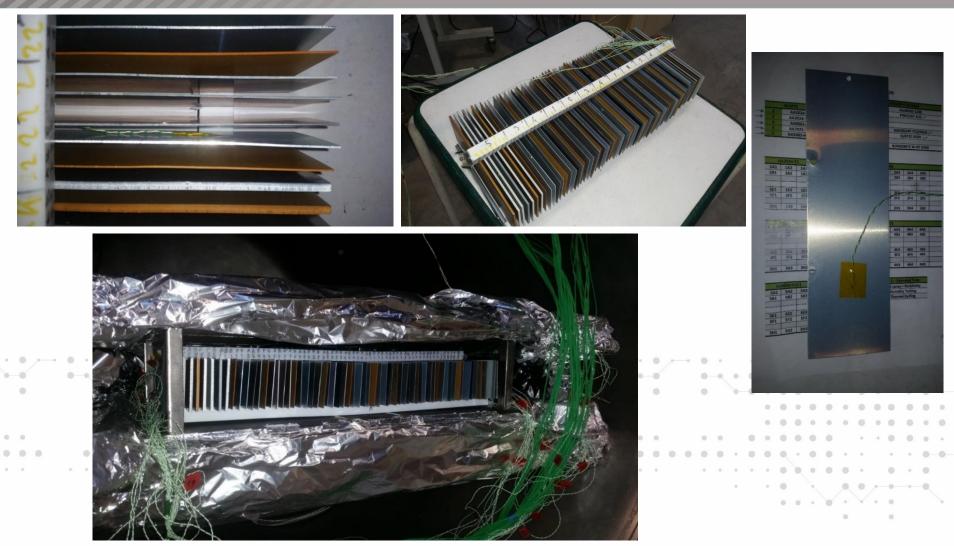


Figure 8 – Thermal Cycling chamber.

PHASE 2 – EXTENDED TESTING – Thermal Cycling Test

www.isq-group.com

Figure 9 – Details of the test papels submitted to Thermal Cycling

16

PHASE 2 – EXTENDED TESTING – Thermal Cycling Test results

www.isq-group.com

	Table 8 – Summarised results obtained after thermal cycling test (visual analysis).							
Aluminium			Chemica	al Conversion Coating Pre-tro	eatments			
SIEFS	Alloy	Alodine 1200	Precoat A32	Socosurf TCS/PACS	Surtec 650 V	Bonderite M-NT 65000		
	AA2024-T3							
STEP 1	AA2024-T81	No evidence of	No evidence of	No evidence of	No evidence of	No evidence of		
	AA6061-T6	No evidence of corrosion						
	AA7075-T73		corrosion	corrosion	corrosion	corrosion		
	AA5083-H111							
	AA2024-T3	No evidence of			No evidence of			
STEP 2	AA2024-T81	corrosion;	No evidence of	No evidence of	corrosion;	No evidence of		
SIEP 2	AA6061-T6	visible areas of	corrosion	corrosion	visible areas of	corrosion		
	AA7075-T73		COTTOSION	corrosion		COTTOSION		
	AA5083-H111	discoloration			discoloration			
	AA2024-T3	No/ little evidence of			Few density corrosion	Few density corrosion		
STEP 3	AA2024-T81	corrosion;	No/ little evidence of	Few density corrosion	spots/pits;	spots/pits;		
JILF J	AA6061-T6	visible areas of	corrosion	spots/pits, barely	visible areas of	visible areas of		
	AA7075-T73		COTTOSION	visible to the eye				
0	AA5083-H111	discoloration			discoloration	discoloration		
	AA2024-T3	No/ little evidence of			Few density corrosion	Few density corrosion		
STEP 4	AA2024-T81	corrosion;	No/ little evidence of	Few density corrosion	spots/pits;	spots/pits;		
5121 4	AA6061-T6	visible areas of	corrosion		visible areas of	visible areas of		
	AA7075-T73		CONOSION	spots/pits				
	AA5083-H111	discoloration			discoloration	discoloration		

PHASE 2 – EXTENDED TESTING – Resistivity Check

www.isq-group.com

- The determination of the resistivity consists on measuring the resistance considering the geometry of the samples.
- The Resistivity Check was carried out in accordance with MIL-DTL-81706, in coated samples before and after the salt spray testing.
- 5 test panels in each configuration were tested 10 times each.
- The evaluation criteria for resistivity check, taken from MIL-DTL-5541 are as follows:

"When under a nominal electrode pressure of 200 psi, class 3 coatings are qualified under MIL-DTL-81706 to have a resistance not greater than 5,000 microhms per square inch as supplied and 10,000 microhms per square inch after 168 hours of salt spray exposure".

PHASE 2 – EXTENDED TESTING – Resistivity Check results

www.isq-group.com

0 0

	ALLOYS	CONVERSION COATINGS	Average Resistivity (m Ω /in ²)	
		ALODINE 1200	0.48	
		PRECOAT A32	0.45	
	AA2024-T3	SOCOSURF TCS/PACS	0.59	
		SURTEC 650V	0.60	
		BONDERITE M-NT 6500	0.52	
		ALODINE 1200	1.65	
		PRECOAT A32	0.48	Table
	AA2024-T81	SOCOSURF TCS/PACS	1.45	Table
		SURTEC 650V	1.42	check
		BONDERITE M-NT 6500	0.87	salt s
		ALODINE 1200	3.80	
		PRECOAT A32	1.61	teste
	AA6061-T6	SOCOSURF TCS/PACS	1.69	
		SURTEC 650V	1.91	
		BONDERITE M-NT 6500	2.34	
0 · ·		ALODINE 1200	2.30	Not
		PRECOAT A32	1.35	• grea
	AA7075-T73	SOCOSURF TCS/PACS	1.83	0
		SURTEC 650V	2.49	
		BONDERITE M-NT 6500	1.94	
		ALODINE 1200	2.54	
		PRECOAT A32	2.35	
	AA5083-H111	SOCOSURF TCS/PACS	2.97	
		SURTEC 650V	2.90	
		BONDERITE M-NT 6500	3.00	

Table 9 – Resistivitycheck values beforesalt spray tests for alltested alloys.

Note: all values not greater than 5 m Ω /in²)

.

Resistivity Check After Salt Spray Testing:

- ➤ The high number of corrosion points and salt residues present in the samples surface after salt spray testing have make difficult the resistivity check measurements.
- It was agreed to make resistivity measurements on samples submitted to thermal cycling, after the 4 steps.

> All obtained values are greater than 10 m Ω /in²

It will be necessary more tests to validate the results and get more knowledge concerning this measurements.

20

www.isq-group.com

- Evaluates the performance of a coating at how well it prevents corrosion under damp heat environments (provides a milder, long term atmosphere in comparison to salt spray tests).
- Humidity exposure and corrosion resistance is a requirement of MIL-PRF-5541.
- 5 test panels in each configuration subjected to an 0 °C / 90 % R.H. environment, in accordance with ASTM D 2247.
- Test panels were tested altogether for **3500 hrs**. Were inspected every 168 hrs (or every 336 hrs towards the end of testing, depending on the results).
- Areas within 5 mm from the edges, identification markings and holding points during processing were excluded from inspection and loss of colour was not a cause for rejection.

<u>Status</u>: Tests in progress (results after 3321 hours – Table 15).

21

PHASE 2 – EXTENDED TESTING – Humidity Test

www.isq-group.com

Figure 16 - Humidity and Temperature chamber: ESPEC, MODEL ARL – panels before testing.

PHASE 2 – EXTENDED TESTING – Humidity Test results

www.isq-group.com

Table 15 – Summarised results obtained after 3321n of humidity test .							
	Chemical Conversion Coating Pre-treatments						
Aluminium Alloy	Alodine 1200	Precoat A32	Socosurf TCS/PACS	Surtec 650 V	Bonderite M-NT 65000		
AA2024-T3	No evidence of corrosion; visible areas of discoloration	No/ little evidence of corrosion	Few density corrosion spots/pits, barely visible to the eye	Few-medium density corrosion spots/pits; visible areas of discoloration	Few-medium density corrosion spots/pits; visible areas of discoloration		
AA2024-T81	No evidence of corrosion; visible areas of discoloration	No/ little evidence of corrosion	Few density corrosion spots/pits, barely visible to the eye	Few-medium density corrosion spots/pits; visible areas of discoloration	Few-medium density corrosion spots/pits; visible areas of discoloration		
AA6061-T6	No evidence of corrosion; visible areas of discoloration	No/ little evidence of corrosion	No/ little evidence of corrosion	No/ little evidence of corrosion; visible areas of discoloration	No/ little evidence of corrosion; visible areas of discoloration		
AA7075-T73	No evidence of corrosion; visible areas of discoloration	No/ little evidence of corrosion	No/ little evidence of corrosion	No/ little evidence of corrosion; visible areas of discoloration	No/ little evidence of corrosion; visible areas of discoloration		
AA5083-H111	No evidence of corrosion; visible areas of discoloration	No/ little evidence of corrosion	No/ little evidence of corrosion	No/ little evidence of corrosion; visible areas of discoloration	Few-medium density corrosion spots/pits; visible areas of discoloration		

Table 15 – Summarised results obtained after 3321h of humidity test

23

➤ Test results have shown that after Salt Spray testing (504 h), only one pretreatment (Precoat A32) passed the minimum requirement for all the alloys excepted AA2024 T81.

Socosurf TCS/PACS, Surtec 650V and Bonderite M-NT 65000 passed the minimum requirements for AA7075-T73, AA6061-T6 and AA5083-H111 and failed for both AA2024 T3 and T81.

In all the cases it was noticed that on AA2024 more intense corrosion signs are visible for the T81 treatment than for the T3.

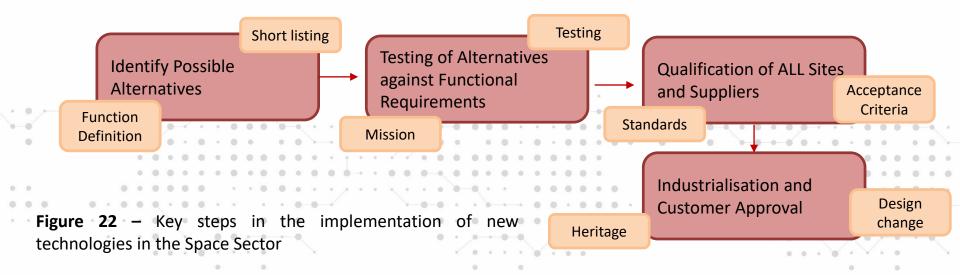
> **Resistivity Check** values measured before salt spray tests are bellow 5 m Ω /in² for all the pre-treatments and substrates. The average values obtained on samples submitted to thermal cycling are all higher than 10 m Ω /in².

24

➤ Thermal Cycling results showed that Precoat A32 had good results for all the alloys, after the 4 steps and Socosurf TCS/PACS, Surtec 650V and Bonderite M-NT 65000 showed corrosion and discoloration after step 3 and 4 for all the alloys.

➤ Humidity Testing results (after 3321 h) showed that Precoat A32 performs better on all the substrates. Socosurf TCS/PACS and Surtec 650V showed good performance on all alloys , except on AA2024 alloys. Finally Bonderite M-NT 65000 showed good performance on AA7075-T73 and AA6061-T6.

➤ The results obtained until now in the extended testing phase have indicated that Precoat A32 and Socosurf TCS/PACS are the most promising chemical conversion alternatives for all the aluminium alloys, including AA2024.


These two pre-treatments and SURTEC 650V will be included in the Long Term Environmental Test Programme (Phase 3) that is now in preparation.

➢ Current investigations, on a laboratory level, suggest that Cr (III) formulations are the preferred alternative candidates. They do not, however, fully meet the desired requirements e.g. corrosion resistance on high strength alloys. Additionally, the technology maturity of these candidates is low (TRL 3-4 after 10 years of development) for many space applications.

 \succ For the space sector, no other candidate formulations investigated are deemed suitable at this time; however investigations are on-going.²

² Comments on the CTAC(Sub) application for authorisation in public consultation, STF-2015-01 - 6.10.2015

Thank you for your attention!

www.isq-group.com