Battery Safety Assessment and Testing

ESA CleanSpace Industrial Days

Bruno Samaniego – Airbus Defence & Space ESTEC - 24th October

Why are we talking today about Battery Passivation?

- Video presentation.
- 2008 Loi d'Opérations Spatiales (LOS)
- 2012 Passivation Electrique En Fin De Vie Du Sous-Système De Puissance (CNES n°116287/00) :
- **2014 Spacecraft Power System Passivation** (ESA n°: AO/1-7840/14/NL/LvH).
- 2015 Battery Passivation (ESA n° AO/1-8325/15/NL/LvH).

Causes of known satellite breakups until 2008. Source: US Space Surveillance Network (SSN)

2

Spacecraft Power System Passivation - Thermal analysis

Three different cases have been studied:

- a LEO spacecraft with a battery located outside the satellite (AstroBus-S platform)
- a LEO spacecraft with batteries located inside the satellite (AstroBus-M or AS250 platform)
- a GEO satellite (E3000 platform)

Thermal analysis: GEO case

For this case, the assumptions that could be taken:

• <u>Duration:</u> 100 years (or forever)

• Orbit: Geo-synchronous orbit.

Season: Solstice: No Eclipse (Certain worst case)

• Attitude: Disturbance torques (Solar pressure? Gravity?).

Radiator pointing to the Sun is a Possible scenario.

Battery covers:

MLI completely torn off Unlikely? Likely? (micro-meteoroids during 100 years...)

Absorptivity degraded to 1: Possible (MLI protects until it is torn off)

Heatpipes failure: Unlikely (passive device)

Internal MLI remains intact Likely

battery PZ cells

PY radiator

battery MZ cells

MY radiator

battery structural plate

(with embedded HP)

Spacecraft Power System Passivation Radiation analysis

Dose partition on battery/ Airbus DS

Approach of the Study

Objective of the Study:

To test Li-lon battery cells and modules under extreme conditions encountered after spacecraft disposal in order to assess their safety.

Approach:

1 Iteration on the test specifications and test plans

2 Test samples supply

3 Upgrade of test samples conditions

4 Tests execution

5 Tests results analysis

6

Test Campaign

- The goal of this Test campaign Proposal is to optimize the quality of the test results at the end of the study by:
 - Avoiding to perform a too late identified useless VES140 TRR test on all the samples.
 - Giving the possibility to add new tests after a first set of results is available.

How?

- By performing a first test campaign just on VES140 model.
- Assessing the impact of aging, radiation and SOC.

Why VES140?

- Because of the availability of aged and representative cells.
- Because new cells VES180 are more valuable for current and future missions.

7

External Short-circuit

ARC Overtemperature

Battery Passivation

Internal Short-circuit

Overcharge

Overdischarge

Assessment on Li-Ion Battery Safety **External Short-circuit**

Short circuits are a direct connection between the **positive and negative terminals** of a cell and/or battery.

Can be caused by:

- Faulty connections between the positive and negative terminals
- Conductive electrolyte leakage paths within a battery
- Structural failures.

Can result in:

- Very high current spikes that cause high pressures inside the cell resulting in venting and explosions.
- The organic solvent leaves the cell via the vent.
- Any hot spot may induce a fire and ejection of parts.

Can be prevented:

- With the use of CIDs/CBs and/or PTCs
- Fuses, circuit breakers, thermal switches at battery level.

RESULTS

- Cell opening: positive terminal (To +1'44") Ejection of electrolyte

Max current: 1200A Max temperature: 160°C

- Internal short circuits are a direct contact between the positive and negative materials inside a battery cell.
 - It is the **punctual perforation of the separator** which generates a local hot spot.
- Can be caused by:
 - Manufacturing defect.
 - Induced internal shorts in the field: due to usage and/or storage in extreme thermal environments; to usage outside manufacturer's voltage and current specifications; to high thermal gradients or to a crash or a failure of the fixture system
- Can result in:
 - Venting, fire, smoke, and go into thermal runaway.
- Can be prevented:
 - No prevention
 - Use of venting disk to mitigate the impact.

Assessment on Li-Ion Battery Safety Internal Short-circuit

Voltage at 0.5V 25s after the beginning of the short-circuit

Fast exothermic reaction Release of black smoked

Max temperature: 460°C

On the anode:

- Overcharge can cause plating rather than intercalation of lithium.
- The plating is not necessarily homogeneous, but dendritic in form, it can ultimately result in a short circuit.
- On the cathode:
 - Overcharge can cause excess removal of lithium. The crystalline structure becomes unstable, resulting in an exothermic reaction.
- Can be caused by:
 - Charging a cell to **too high of a voltage** (over voltage overcharge).
 - Charging at excessive currents, but not excessive voltages, can also cause an overcharge failure
- Can result in:
 - Immediate cell thermal runaway,
- Can be prevented:
 - With the use of CIDs/CBs at cell level.
 - Fuses, circuit breakers, thermal switches at battery level.
 - Voltage control at battery level.

Cell opening: positive terminal (To +56'10'')

+ Ejection of electrolyte Ejection of jelly roll

+ Release of smoked

Max temperature: 800°C

- Over-discharge can cause internal damage to electrodes and current collectors (i.e., dissolution of copper), can lead to Cu dendrite generation and can ultimately lead to short-circuit.
- Can be caused by:
 - Discharging a cell to too low of a voltage.
- Can result in:
 - Copper ions which are dispersed throughout the electrolyte are precipitated as metallic copper wherever they happen to be, not necessarily back on the current collector foil. This is a dangerous situation which can ultimately cause a short circuit between the electrodes.
 - Exothermic reaction linked to the copper reduction-oxidation reaction, no thermal runaway since there is almost no electric charge.
- Can be prevented:
 - With the use of CIDs/CBs at cell level.
 - Voltage control at battery level.

Assessment on Li-Ion Battery Safety Over-discharge

Battery passivation - S140-09 - Overdischarge test

- N2 flow: 0.1L/min
- Charge the cell at C/10 up to defined SoC (100% SoC; 50% SoC; 0% SoC)
- Increase gradually the temperature until a thermal runaway appears. Stop heating.
 - Temperature step: 5°C
 - Temperature rate sensitivity': >0.02°C/min. = thermal runaway
 - End temperature': 180°C (test stop)
 - Safety temperature rate': 1°C/min. (test stop)

- Operating at high temperatures helps to get higher power out of the cell by increasing the reaction rate, but higher currents give rise to higher I²R heat dissipation and thus even higher temperatures.
- Can be caused by:
 - Exotherms begin at anode due to SEI (Solid Electrolyte Interphase) reactions and decomposition at temperatures as low as 50°C.
- Can result in:
 - Cell thermal runaway.
 - Separator melting and decomposition,
 - Hot surface ignition of flammable mixtures, there must be sufficient oxygen in the surrounding environment to sustain combustion o
 - Cell contents may be ejected and can travel significant distances (many meters), spreading heated material.
- Can be prevented:
 - With the use of Internal Protective Devices.
 - Low SOC, the ambient environmental temperature, the electrochemical design of the cell and the mechanical design of the cell.
- Aging reduces carbon reactivity (more stable, well developed SEI layer) leading to more

 On November the remaily stable cell

Assessment on Li-Ion Battery Safety High temperature

 Micrometeoroids impact can be associated to a mechanical damage (crush or penetration).

Can be caused by:

• Micrometeoroid and/or debris impact.

• Can result in:

- Damage that occurs at electrode edges is significantly more likely to cause cell thermal runaway than damage perpendicular to electrode surfaces.
- Perpendicular to electrode surfaces: low impedance shorting will occur between current collectors, and cell heating may be too low to result in cell thermal runaway.
- Perpendicular to electrode edges: that deformation is likely to result in high impedance shorting between electrode layers and initiate cell thermal runaway

• Can be prevented:

• With the mechanical design of the cell, battery and/or spacecraft.

Assessment on Li-Ion Battery Safety

Micrometeoroids and Debris

An aluminum ball of 8mm diameter is projected three different location of the cell. Its mass is 0.72 – 0.73 g and its speed is above 1000 m.s-1

RESULTS

Max temperature: 400°C

Max temperature: 680°C

External Short-circuit

ARC Overtemperature

Battery Passivation

Tests

Internal Short-circuit

Micrometeoroids Debris

Overcharge

Overdischarge

This looks awful... so what can we do?

At Battery level

- Discharge your battery as much as possible at the EoM.
- Connect it to a bleed resistance and disconnect it from the bus.
- Cell internal protections are an asset.
- Develop safer batteries: solid electrolyte, casings, inter-cells material...

At Satellite level

- Assess the most probable attitude once the satellite is uncontrolled.
- Determine the worst thermal scenario and design the S/C to be avoided.
- Determine the best possible way to reduce the satellite temperature: spin it!

