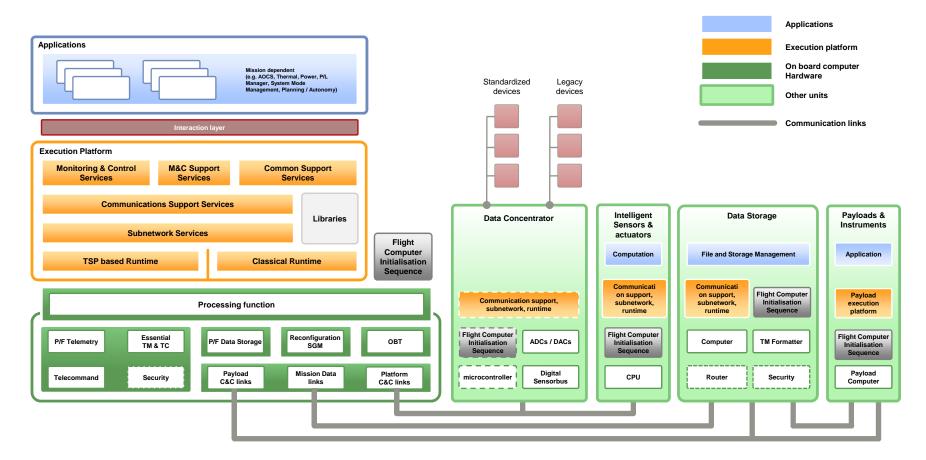


FAIRE working group report (software) – Documentation status


Peter Mendham (Bright Ascension) / Andreas Jung (ESA)

ESA UNCLASSIFIED – For Official Use

The avionics reference architecture (HW + SW)

Who | What | Where | When | Pag. 2 ESA UNCLASSIFIED – For Official Use

The roles of the OSRA layers

- Component Layer
 - This is the "Application Layer"
 - Mission-specific functions
 - Re-use achieved through a component- and model-based approach
- Interaction Layer
 - Provides the "glue" between components and the Execution Platform
 - Implements real-time concerns for components
 - Expected to be tool-generated (no re-use needed)
- Execution Platform
 - Implements all non-mission-specific functions
 - Re-use achieved through reconfiguration

Why standardise the OSRA?

- Encourage a common approach and terminology
- Permit re-use and collaboration at the component layer
 - Exchange of models across and within teams
 - Exchange of component implementations
- Encourage a diversity of tooling
- Encourage a diversity of Execution Platforms
- This requires some standardisation at
 - Component Layer
 - Execution Platform
- Level of standardisation carefully chosen to meet the re-use and collaboration/cooperation needs at that layer

OSRA standardisation (1) – the documents

- An informative guide to the OSRA (TN-002)
 - Complete guide to the OSRA
 - Rationale, User Needs and Requirements
 - Overall architecture and expected process
 - Guide to the component model and of pseudo-components
 - The role of the Interaction Layer
 - An overview of the Execution Platform
 - "Bird's eye view" of the other OSRA documents
- SCM meta-model specification (TM-001)
 - Complete meta-model description (an ecore example)
 - Standard serialisation/exchange format based on XMI
 - Exchange format compliance based on XML equivalence

OSRA standardisation (2) – the documents

- Pseudo-component specification (TM-002)
 - Complete specification of component layer pseudocomponents
 - In terms of the SCM as defined in TM-001
- Component interface specification (TM-003)
 - Specification of interface between a component implementation and the interaction layer
 - In terms of ISO OSI abstract service primitives
 - Example concrete language bindings to C and Ada
- Execution Platform functional specification (GS-005)
 - Specification of the Execution Platform at a functional level

Why Execution Platform standardisation?

- Encourage a common approach to the Execution Platform
 - Use common terminology
 - Locate and bound the Execution Platform within the OSRA
- Encourage diverse designs and implementations
 - Provide guidance on architecture
- Be able to compare alternative implementations
- Encourage re-use, collaboration and competition

Execution Platform – Standardisation approach

- Functional specification of the Execution Platform (GS-005)
 - Identify what functions an Execution Platform should have
 - Identify relationships between functions
 - No specification of how functions should be implemented
- One requirement stating that functional breakdown should be reflected in the architecture
 - Designed to be tailored out if necessary/desirable
- Level of abstraction which permits a range of implementations
 - Capture current state of the art
 - Leave open alternative implementations in future
- Functional breakdown and specifications is new material
 - Draws on SIFSUP and COrDeT-3
- Covers all major Execution Platform functions
 - Designed to be tailored by missions

Execution Platform – Functional breakdown

- Software Execution Environment
 - OS/tasking; libraries; life cycle; context; partitioning
- Hardware Execution Environment
 - Platform management; time access; storage access
- Network and Device Access
 - Subnetwork access; device access
- Protocol Handling
 - M&C, data transfer; onboard communications
- Monitoring and Control
 - Commanding; parameter access, reporting, acquisition, pooling, statistics, monitoring; event distribution; logging
- Access by External Systems
 - Platform access (e.g. memory, storage), device access
- Automation

Execution Platform – Example requirements

- From Parameter Access and Reporting (representative)
 - The Execution Platform shall be capable of requesting the value of parameters provided by applications in response to requests from within the Execution Platform, external systems or other applications.
 - The Execution Platform shall be capable of returning parameter values in response to requests from the Execution Platform to the source of the value request.
- General architectural requirement
 - Each functional capability specified in this specification shall be implemented by the Execution Platform as an architecturally distinct software layer or module.
 - Note that this requirement can be tailored out

Document status and workplan

- An informative guide to the OSRA (TN-002)
 - Draft submitted
- SCM meta-model specification (TM-001)
 - Early draft under revision
 - Next draft due next week
- Pseudo-component specification (TM-002)
 - Draft submitted
- Component interface specification (TM-003)
 - Draft due this week
- Execution Platform functional specification (GS-005)
 - Requirements set completed in draft form for internal review

