# Control Loop Processor-based mission critical applications

Architecture and development flow of the Ariane 6 & Vega-C P120 Thrust Vector Control system embedded software

SABCA PROPRIETARY Ref. CLP-DP-G-040-SABC FERON Jean-Brieuc EMBEDDED SYSTEMS ENGINEER



CONTRACT OFFICER : R. WEIGAND (TEC/ED)

ESA CONTRACT NUMBER : 4000107720/12/NL/LvH

## Who are we?



> Shareholders

#### > Plants





### What do we do? at SABCA



> Markets



Feron J-B | Ref. CLP-DP-G-040-SABC

### Ariane 6 & Vega-C P120 Thrust Vector Control (TVC) system

System architecture

Context & constraints

Control architecture



### Architecture

of the Ariane 6 & Vega-C P120 TVC system



> Vega P80 TVC system :



### **Context & constraints**

of the Ariane 6 & Vega-C P120 TVC system

- > Launcher
  - First launch : 2019 (Vega-C), 2020 (Ariane 6)
  - Planning status : post PDR
- > Thrust Vector Control system
  - Requirements
    - Stroke
    - Accuracy
    - Speed
    - Reliability
    - Differential force feedback
  - Constraints
    - High vibration
    - High temperature
    - Vacuum
    - Shocks





esa

#### **Control architecture** of a single Ariane 6 & Vega-C P120 actuation system



- > Commands are received from the launcher on-board computer
- > 3 nested control loops : current , speed, position



### Embedded software requirements & constraints



of the Ariane 6 & Vega-C TVC system

- > Requirements
  - Control the actuator position
  - Communicate with On-Board Computer
  - Perform measurements (functional & non-functional)
  - Support launcher interfaces (TM/TC/measurements,...)
  - Meet ECSS constraints (Class B)
  - Support configuration commands
  - Support different operational modes
  - Withstand a tight planning at a competitive cost

### Impact on the processing platform selection?

SABCA PROPRIETAR

### Communicate with On-Board Computer

- Perform measurements (functional & non-functional)
- Support launcher interfaces (TM/TC/measurements,...)
- Meet ECSS constraints (Class B)

of the Ariane 6 & Vega-C TVC system

Control the actuator position

> Requirements

- Support configuration commands
- Support different operational modes
- Withstand a tight planning at a competitive cost

### Impact on the processing platform selection



SW criticality requirement Agility requirements

Performance

requirements

### Control Loop Processor in a nutshell

Reliable

Agile

Processing platform



### A softcore processor and a development platform with 3 specificities



| Reliable                                                              | Agile                                                                                              | Performance                                                             |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Deterministic<br>Cache-free & non interruptible<br>architecture       | Quick turnaround time<br>Straightforward code generation                                           | Precision arithmetic<br>IEEE-754 floating-point operations              |
| Certified<br>European space standards compliance                      | Flexible softcore architecture<br>Configurable number of cores,<br>arithmetic units or memory size | High throughput<br>Dual-core SIMD architecture,<br>Direct Memory Access |
| Fault-tolerant<br>Error detection & correction<br>Radiation hardening | Short design validation time<br>Deterministic system behaviour<br>Small state space to validate    | High connectivity<br>High-speed communication interfaces                |
| Integrated<br>Communication interfaces,<br>Low level control          | Project planning flexibility<br>Early demo & late changes support                                  | Real-time<br>HW/SW synchronization<br>Operating System free             |

### Architecture

of the Control Loop Processor





### A complete development platform

supporting the user all along its development process





#### > Simulator

Cycle- and bit-accurate C++ compliant model, provides early representative processing performance.

> FPGA development board Integrating all the communication interfaces for early integration tests

#### > Embedded Software Generation toolchain Eclipse based configuration wizards, automated code generation from Simulink

### Ariane 6 & Vega-C P120 TVC embedded software

Software architecture

Performance

Development flow





- > Two cores with the same software each control one actuator
- > A dedicated CLP hardware timer synchronizes the whole system
- > Analog acquisitions performed outside PWM switching
- > I/O servicing through software polling



### Performance

of the controller based on the CLP platform



- > Taking advantage of the CLP architecture Dual-Core, SIMD, fault tolerance
- > Complexity

Floating point control with complex operations (motor control direct & reverse transforms, 1st & 2nd orders filters) and power sharing.

> Resources usage

| Program memory   | < 40%              |  |
|------------------|--------------------|--|
| RAM              | < 20% (worst case) |  |
| Registers        | minimal            |  |
| Peak CPU load    | < 75%              |  |
| Average CPU load | < 70%              |  |

### Development flow

of the CLP embedded software



- > The macro library is highly optimized and pre-validated
- > The binary file is validated against different reference models
- > Point-to-point source & output software cross-checking



### Progress illustration Vega-C Z40 TVC system



### **Environment tests**

of Vega-C Z40 TVC system







- > There is a strong link between
  - Thrust Vector Control system requirements
  - Processing platform architecture
  - Embedded software performance & development effort

> The existence of a reliable & agile processing platform is a reality

> Our customers take advantage of this platform for their mission critical applications. Why don't you?

### Evaluation pack available on request!



### Thank you!

Vega

Jean-Brieuc FERON EMBEDDED SYSTEMS ENGINEER

Chaussée de Haecht 1470 1130 Brussels Belgium

+32 2 729 57 13 jean-brieuc.feron@sabca.be @feronjb

Feron J-B | Ref. CLP-DP-G-040-SABC

esa

esa