

Assessment of SpaceFibre with respect to OSRA-NET requirements

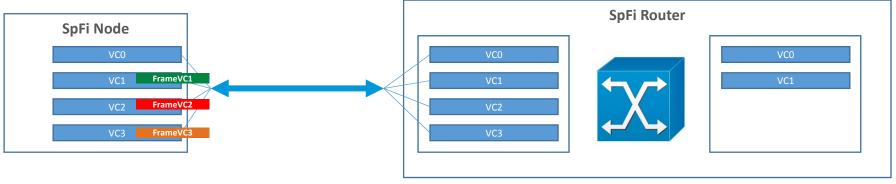
Alessandro Leoni

October, 2017

Outline

- SpaceFibre introduction
- OSRA-NET requirements under study
 - Traffic classes
 - Time distribution and interrupt mechanisms
 - Quality of Service (Reliability)
 - Redundancy
- SpaceFibre applied to a "JUICE-like" router
- Conclusions

SpaceFibre is the forthcoming technology for on-board satellite networks


Facts for SpaceFibre link:

- Quality of Service (QoS)
- Integrated Fault Detection Isolation and Recovery (FDIR), with data retransmission in case of errors
- Very high data rates (up to 6.25 Gbps per lane)
- A general Broadcast service
- Reduction of harness mass compared to SpaceWire (33% on copper, 50% on optical fiber, > 90% when comparing per bit transferred)

SpaceFibre Quality of Service implemented through Hardware Virtual Channels

The data stream is fragmented in *frames* (64-words), interleaved among the VCs to achieve the desired QoS

Alessandro Leoni October 2017 5

Each Virtual Channel can be configured using:

- Time slots: a VC can transmit only during the time slots allocated to it
- Priority: each VC has a priority level. Only the highest priority VC is allowed to transmit the next frame
- Bandwidth allocation: each VC can use up to the percentage of the link allocated to it. If it uses more, the babbling protection limits its link usage

QoS precedence: Time slot → priority level → bandwidth allocation

Quality of Service is completely managed in hardware by the port, no need of upper layers

OSRA-NET requirements under study

OSRA-NET Requirements AL2 DT3

Requirements groups		Comments
	Generic Capabilities	Three traffic classes:
		Time distribution mechanism
COMMUNICATION SYSTEM		Interrupt mechanism
CAPABILITIES REQUIREMENTS	Quality of Service requirements	QoS (Reliability) classes: At most once At least once Exactly once
	Class of communication requirements	Frequency/latency/jitter/QoS requirements for common communication classes
COMMUNICATION INFRASTRUCTURE REQUIREMENTS		Cold, warm and hot redundancy
ERROR HANDLING AND FDIR REQUIREMENTS		Error detection and reporting at datalink, network and transport layer
SYSTEM-LEVEL COMMUNICATION REQUIREMENTS		Presence of a supervisor in the network

Slide 8

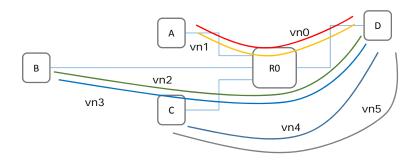
AL2 this is a new slide. on the left two columns there are the names of the chapters of OSRA-NET. in the right column a summary of the main requirements Alessandro Leoni, 12/10/2017

DT3 ok

Dirk Thurnes, 12/10/2017

Traffic classes

Requirements groups		Comments
	Generic Capabilities	Three traffic classes:
		Time distribution mechanism
COMMUNICATION SYSTEM		Interrupt mechanism
CAPABILITIES REQUIREMENTS	Quality of Service requirements	QoS (Reliability) classes: At most once At least once Exactly once
	Class of communication requirements	Frequency/latency/jitter/QoS requirements for common communication classes
COMMUNICATION INFRASTRUCTURE REQUIREMENTS		Cold, warm and hot redundancy
ERROR HANDLING AND FDIR REQUIREMENTS		Error detection and reporting at datalink, network and transport layer
SYSTEM-LEVEL COMMUNICATION REQUIREMENTS		Presence of a supervisor in the network



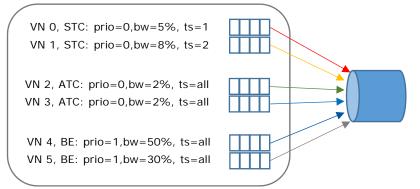
Traffic classes – Virtual Network concept

Each application runs on its own Virtual Network

Virtual Network:

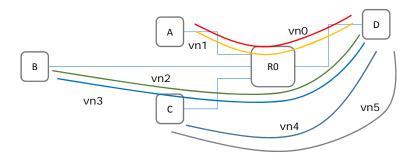
chain of Virtual Channels along the path

Goal: guarantee maximum latency even when another application fails

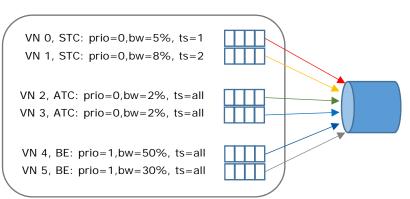


Traffic classes

Router Output Port



- For Synchronous Time-Critical Traffic:
 - High priority
 - Low reserved bandwidth
 - Assigned time slots
- For Asynchronous Time-Critical Traffic:
 - High priority
 - Low reserved bandwidth
 - Scheduled in all time slots
- For Best Effort Traffic:
 - Low priority
 - · Scheduled in all time slots



Traffic classes

Router Output Port

If a fault happens in a **BE** node:

 All other nodes have still their bandwidth guaranteed (low priority)

If a fault happens in a **STC** or **ATC** node:

- Other STC and ATC nodes (same priority) are safe → the bandwidth reservation mechanism will immediately privilege them against the babbling node
- BE nodes (lower priority) are shortly penalized at the beginning, then the **babbling**protection kicks in and forces the faulty node not to use more than its allocated bandwidth

Time distribution and interrupt mechanisms

Requirements groups		Comments
	Generic Capabilities	Three traffic classes:
		Time distribution mechanism
COMMUNICATION SYSTEM		Interrupt mechanism
CAPABILITIES REQUIREMENTS	Quality of Service requirements	QoS (Reliability) classes:
	Class of communication requirements	Frequency/latency/jitter/QoS requirements for common communication classes
COMMUNICATION INFRASTRUCTURE REQUIREMENTS		Cold, warm and hot redundancy
ERROR HANDLING AND FDIR REQUIREMENTS		Error detection and reporting at datalink, network and transport layer
SYSTEM-LEVEL COMMUNICATION REQUIREMENTS		Presence of a supervisor in the network

Time distribution and interrupt mechanisms

SpaceFibre does not provide a time distribution and an interrupt mechanism on its own.

However it is possible to use SpaceFibre Broadcast Messages to implement them

Broadcast message

- · 8-bytes data field
- Precedence over data traffic
- Automatic loop prevention in the routers
- Extremely low latency

Time distribution and interrupt mechanisms

SpaceFibre does not provide a time distribution and an interrupt mechanism on its own.

However it is possible to use SpaceFibre Broadcast Messages to implement them

Broadcast message

- 8-bytes data field
- Precedence over data traffic
- Automatic loop prevention in the routers
- Extremely low latency

The time distribution and interrupt service will be part of the SpFi transaction layer, which is not part of the SpFI ECSS-E-ST-50-11C standard.

Quality of Service (Reliability)

Requirements groups		Comments
	Generic Capabilities	Three traffic classes:
		Time distribution mechanism
COMMUNICATION SYSTEM		Interrupt mechanism
CAPABILITIES REQUIREMENTS	Quality of Service requirements	QoS (Reliability) classes: At most once At least once Exactly once
	Class of communication requirements	Frequency/latency/jitter/QoS requirements for common communication classes
COMMUNICATION INFRASTRUCTURE REQUIREMENTS		Cold, warm and hot redundancy
ERROR HANDLING AND FDIR REQUIREMENTS		Error detection and reporting at datalink, network and transport layer
SYSTEM-LEVEL COMMUNICATION REQUIREMENTS		Presence of a supervisor in the network

QoS (Reliability) Requirements

Reliability requirements in terms of SDU (Service Data Unit)

- At most once: the emitter must emit an SDU at most one time (the receiver could not receive it)
- At least once: the receiver must receive an SDU at least one time (the receiver could receive multiple copies of the same SDU)
- Exactly one: the receiver must receive an SDU exactly one time

QoS (Reliability) Requirements

Reliability requirements in terms of SDU (Service Data Unit)

- At most once: the emitter must emit an SDU at most one time (the receiver could not receive it)
- At least once: the receiver must receive an SDU at least one time (the receiver could receive multiple copies of the same SDU)
- Exactly one: the receiver must receive an SDU exactly one time

They require ack/nack/timeout mechanisms at SDU level end-to-end point of view =>should be handled on application/ transport layer

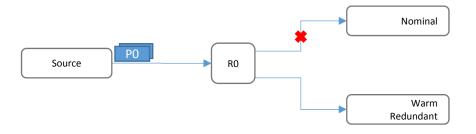
... however, SpaceFibre provides a **reliable** link with **point-to-point retransmission** in case of errors

=> needs to be discussed if these requirements are applicable to SpaceFibre networks

Communication classes

Requirements groups		Comments
	Generic Capabilities	Three traffic classes:
		Time distribution mechanism
COMMUNICATION SYSTEM		Interrupt mechanism
CAPABILITIES REQUIREMENTS	Quality of Service requirements	QoS (Reliability) classes: At most once At least once Exactly once
	Class of communication requirements	Frequency/latency/jitter/QoS requirements for common communication classes
COMMUNICATION INFRASTRUCTURE REQUIREMENTS		Cold, warm and hot redundancy
ERROR HANDLING AND FDIR REQUIREMENTS		Error detection and reporting at datalink, network and transport layer
SYSTEM-LEVEL COMMUNICATION REQUIREMENTS		Presence of a supervisor in the network

Requirements groups		Comments
	Generic Capabilities	Three traffic classes:
		Time distribution mechanism
COMMUNICATION SYSTEM		Interrupt mechanism
CAPABILITIES REQUIREMENTS	Quality of Service requirements	QoS (Reliability) classes: At most once At least once Exactly once
	Class of communication requirements	Frequency/latency/jitter/QoS requirements for common communication classes
COMMUNICATION INFRASTRUCTURE REQUIREMENTS		Cold, warm and hot redundancy
ERROR HANDLING AND FDIR REQUIREMENTS		Error detection and reporting at datalink, network and transport layer
SYSTEM-LEVEL COMMUNICATION REQUIREMENTS		Presence of a supervisor in the network



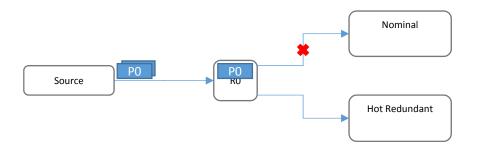
Cold Redundancy

· Always feasible if the network topology supports it

Warm Redundancy

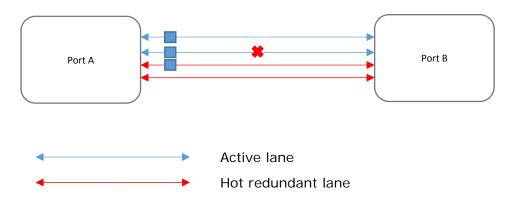
- Can handle it at application level and/or..
- Can use Group Adaptive Routing, under the assumption that a failing device stops to accept data

Group Adaptive Routing:


The first free output port in an output port set is chosen to transmit the packet

Hot Redundancy

• Can make use of SpaceFibre Multicast


Multicast:

All the output ports in the output set are chosen to transmit the packet

SpaceFibre Multilane: Hot Redundant Lanes

Hot redundant lanes:

"idle" lanes that are not used to send data but that are ready to be automatically switched on by the port in case one of the nominal lanes fails

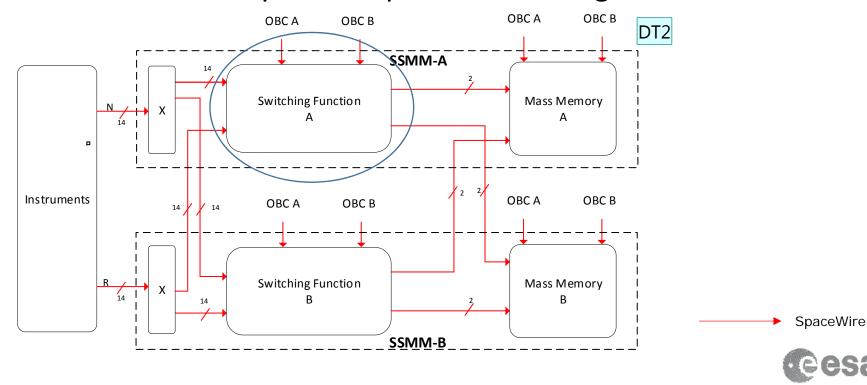
- Extremely fast to switch (few clock cycles)
- No data is lost in the process (retry)
- Automatically done by the port

Error detection and reporting

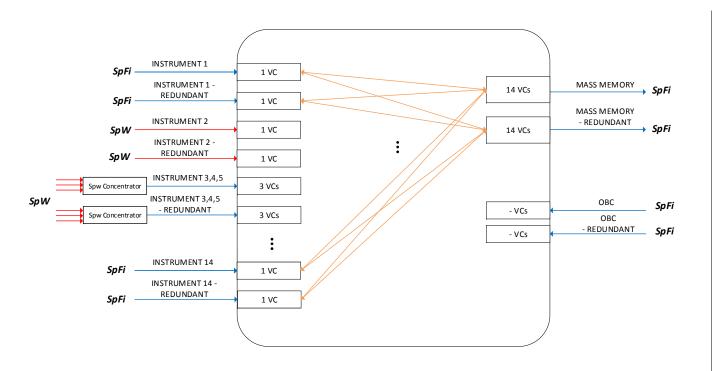
Requirements groups		Comments
	Generic Capabilities	Three traffic classes:
		Time distribution mechanism
COMMUNICATION SYSTEM		Interrupt mechanism
CAPABILITIES REQUIREMENTS	Quality of Service requirements	QoS (Reliability) classes: At most once At least once Exactly once
	Class of communication requirements	Frequency/latency/jitter/QoS requirements for common communication classes
COMMUNICATION INFRASTRUCTURE REQUIREMENTS		Cold, warm and hot redundancy
ERROR HANDLING AND FDIR REQUIREMENTS		Error detection and reporting at datalink, network and transport layer
SYSTEM-LEVEL COMMUNICATION REQUIREMENTS		Presence of a supervisor in the network

System-Level Communication Requirements

Requirements groups		Comments	
	Generic Capabilities	Three traffic classes:	
		Time distribution mechanism	
COMMUNICATION SYSTEM		Interrupt mechanism	
CAPABILITIES REQUIREMENTS	Quality of Service requirements	QoS (Reliability) classes: At most once At least once Exactly once	
	Class of communication requirements	Frequency/latency/jitter/QoS requirements for common communication classes	
COMMUNICATION INFRASTRUCTURE REQUIREMENTS		Cold, warm and hot redundancy	
ERROR HANDLING AND FDIR REQUIREMENTS		Error detection and reporting at datalink, network and transport layer	
SYSTEM-LEVEL COMMUNICATION REQUIREMENTS		Presence of a supervisor in the network	

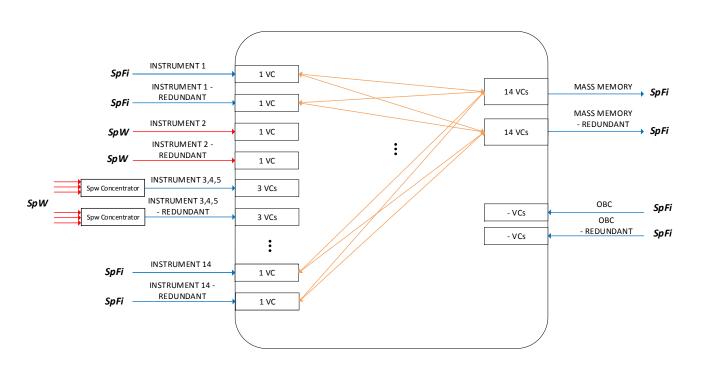


SpaceFibre applied to a "JUICE-like" router



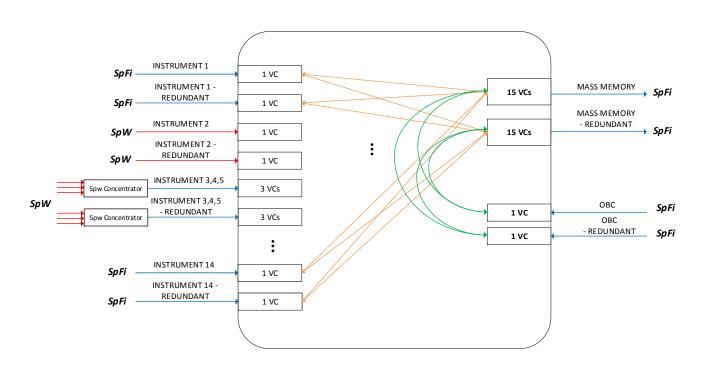
JUICE Payload Simplified Block Diagram

should say OBC Dirk Thurnes, 12/10/2017 DT2

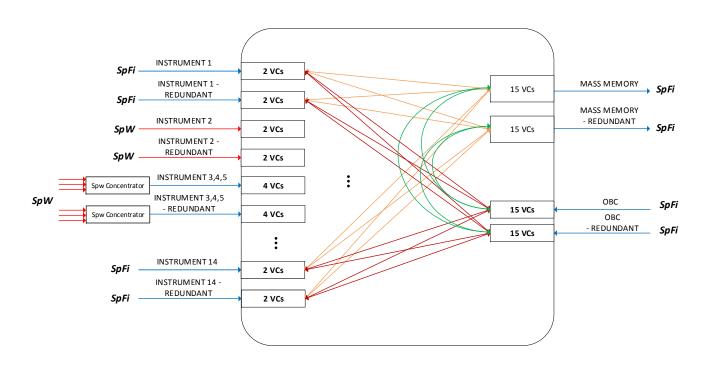


SpaceWire and SpaceFibre are **compatible** at Network Level

- Possible to directly connect SpaceWire and SpaceFibre devices to the same router
- Possible to concentrate multiple SpaceWire links into Virtual Channels of a single SpaceFibre link → harness reduction



VN	BW	Priority	Timeslots
1	20%	Low(5)	All
2	30%	Low(5)	All
14	15%	Low(5)	All



VN	BW	Priority	Timeslots
1	20%	Low(5)	All
2	30%	Low(5)	All
14	15%	Low(5)	All
15	5%	High(3)	All

VN	BW	Priority	Timeslots
1	20%	Low(5)	All
2	30%	Low(5)	All
14	15%	Low(5)	All
15	5%	High(3)	All
16	3%	High(3)	0,1
17	3%	High(3)	2,3

No problem to implement JUICE network with SpaceFibre, adding **Quality of Service** and **FDIR** capabilities

Conclusions

Requirements groups		Comments	Compliance
	Generic Capabilities	Three traffic classes:	ОК
		Time distribution mechanism	OK/UPPER LAYER
COMMUNICATION SYSTEM		Interrupt mechanism	OK/UPPER LAYER
CAPABILITIES REQUIREMENTS	Quality of Service requirements	QoS (Reliability) classes: • At most once • At least once • Exactly once	OK/UPPER LAYER/ NOT NEEDED
	Class of communication requirements	Frequency/latency/jitter/QoS requirements for common communication classes	OK/UPPER LAYER
COMMUNICATION INFRASTRUCTURE REQUIREMENTS		Cold, warm and hot redundancy	ок
ERROR HANDLING AND FDIR REQUIREMENTS		Error detection and reporting at datalink, network and transport layer	OK/UPPER LAYER
SYSTEM-LEVEL COMMUNICATION REQUIREMENTS		Presence of a supervisor in the network	OK (ARCHITECTURAL REQ)

esa

Conclusions

SpaceFibre:

- implements the Virtual Network concept
- allows to handle best effort and time critical data
- provides a low-latency broadcast service
- provides a reliable link
- harness mass reduction

SpaceFibre can be used as communication technology in an OSRA-NET compliant network with a great simplification of upper layers

