GR740 and GR716 (and GR712RC)
Development Status and Applications
Space Processors: High Performances Symmetric/Asymmetric Multicore

ADCSS 2017
ESTEC, Noordwijk, The Netherlands
2017-10-19
Introduction / Agenda

• Current, and in-development, space microprocessors
 – GR712RC – Existing space-grade microprocessor
 – GR740 – Next generation microprocessor
 – GR716 – LEON microcontroller development

• Applications

• Software ecosystem
 – Toolchains update

• Outlook: Future developments of processor IP, standard products, and the supporting software ecosystem
GR712RC Dual-Core LEON3FT Processor

50 project wins and 50 projects in evaluation as of Jan 2017

- TowerJazz 180 nm CMOS technology: Ramon RadSafe cell library
 - TID 300 Krad(Si); SEL: LET > 118 MeV/cm²/mg; 1.8V core, 3.3V I/O voltage
- Power consumption (typical): 15 mW / MHz (dual core, MMU, FPU)
- Dual Core LEON3FT Fault-tolerant processor (SMP)
 - 32 KiB cache with 4 parity bits per word
- CQFP240, 0.5 mm pitch, 32x32 mm, hermetically sealed
- Assembly by HCM/SERMA in France
Next step - Quad-Core LEON4FT

Architecture - designed for multi-processing

- System-on-chip
 - 4 x LEON4 fault tolerant CPU:s with MMU, FPU
 - 16+16 KiB Level-1 I+D cache, separate per CPU
 - 2048 KiB Level-2 cache, shared between CPUs
 - PLLs for clock generation
 - SDRAM memory controller with EDAC and scrubber
 - PROM memory controller with EDAC
 - Communication interfaces

- Targeting general-purpose payload processing.

- Separated debug subsystem
 - Tracebuffers for on-chip bus and processors
 - Allows continuous read-out of trace data
 - Special instructions for instrumentation
 - Filtering on device before entering buffers

- Extended to support A(S)MP operation
 - Duplication of functionality (IRQ ctrl, timers, ...)
 - Peripheral memory ranges spaced further apart

- Peripheral units capable of DMA connect to L2 cache and external memory through IOMMU

- Remote boot – through SpW RMAP, PCI

- Improved processor control interfaces for processor core stop/(re)start without device reset (Si rev 1)
GR740 - Quad-Core LEON4FT Processor
European Next Generation Microprocessor development

- ESA’s Next Generation Microprocessor (NGMP)
- Quad-core LEON4FT rad-tolerant SoC device
 - 4x LEON4FT with dedicated FPU and MMU
 - 128 KiB L1 caches connected to 128-bit bus
 - 2 MiB L2 cache, 256-bit cache line, 4-ways
 - 64-bit SDRAM memory I/F (+32 checkbits)
 - 8-port SpaceWire router with +4 internal ports
 - 32-bit 33 MHz PCI interface
 - 2x 10/100/1000 Mbit Ethernet
 - Debug links: Ethernet, JTAG, SpaceWire
 - MIL-STD-1553B, CAN 2.0B, 2 x UART
 - SPI master/slave, GPIO, Timers & Watchdog
- ST 65nm bulk CMOS process
- LGA625 / CCGA625 package
- Rated 250 MHz. Power consumption (including I/O) at 40°C:
 - 4x CPU: 1.85 W (1700 DMIPS)
- Current work to develop flight model.
- Differences for FM silicon to be listed in v1.7 of the user’s manual
 - Backward incompatible change: Boot interface via interrupt controller

GR740 updated schedule

As of 18 October 2017

<table>
<thead>
<tr>
<th>GR740</th>
<th>Status</th>
<th>Milestone</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 2 CCN-1 - redesign</td>
<td>done</td>
<td>2017 July</td>
<td>netlist delivered</td>
</tr>
<tr>
<td>Phase 2 CCN-1 - layout</td>
<td></td>
<td>2017 Sep</td>
<td>ongoing</td>
</tr>
<tr>
<td>Phase 3a – contract signature</td>
<td></td>
<td>2017 Oct</td>
<td>In negotiation</td>
</tr>
<tr>
<td>Phase 3a – new silicon tapeout</td>
<td></td>
<td>2017 Nov</td>
<td></td>
</tr>
<tr>
<td>Phase 3a – new silicon validation</td>
<td></td>
<td>2018 Feb</td>
<td></td>
</tr>
<tr>
<td>Phase 3a – new prototype part delivery</td>
<td></td>
<td>2018 Feb</td>
<td></td>
</tr>
<tr>
<td>Phase 3b – contract signature</td>
<td></td>
<td>2018 Jan</td>
<td>pending approval</td>
</tr>
<tr>
<td>Phase 3b – space level assembly</td>
<td></td>
<td>Q1 2018</td>
<td></td>
</tr>
<tr>
<td>Phase 3b – space level screening</td>
<td></td>
<td>Q3 2018</td>
<td></td>
</tr>
<tr>
<td>Phase 3b – space level qualification</td>
<td></td>
<td>Q4 2018</td>
<td></td>
</tr>
<tr>
<td>Phase 3b – space level flight part delivery</td>
<td></td>
<td>2018 Dec</td>
<td>QML-V/Q equivalent</td>
</tr>
<tr>
<td>Phase 3b – space level qualification approval</td>
<td></td>
<td>2019 Dec</td>
<td>QML-V/Q</td>
</tr>
</tbody>
</table>
GR716 – LEON3FT Microcontroller

European microcontroller development

- LEON3FT - Fault-tolerant SPARC V8 32-bit processor, 50 MHz
 - 16-bit instruction set support to improve code density
 - Floating Point Unit. Memory protection units
 - Non-intrusive advanced on-chip debug support unit
- External EDAC memory: 8-bit PROM/SRAM, SPI, I2C
- SpaceWire interface with time distribution support, 100 Mbps
 - LVDS Driver and Transmitter
- MIL-STD-1553B interface
- CAN 2.0B controller interface
- PacketWire with CRC acceleration support
- Programmable PWM interface
- SPI with SPI-for-Space protocols
- UARTs, I2C, GPIO, Timers with Watchdog
- Interrupt controller, Status registers, JTAG debug, etc.
- ADC 11bits @ 200Ksps, 4 differential or 8 single ended
- DAC 12bits @ 3Msps, 4 channels
- Multi-channel DMA controller
- External ADC/DAC controller
- Mixed General purpose inputs and outputs
- Power-on-Reset and Brown-out-detection
- Temperature sensor, Integrated PLL
- On-chip regulator for 3.3V single supply
- 132 pin QFP, 24 mm x 24 mm
- **FM partially funded. Current outputs are prototypes and eval board.**
LEON3/LEON4: RTG4 evaluation bitfiles
Pre-built evaluation FPGA configurations

- Users program bitfiles directly onto their Microsemi RTG4 Development Kits
- RTG4_ES and RTG4 PROTO at 50 MHz.
- GRMON2 evaluation version support
- No cost, no registration
- Example bitstreams unsuitable for flight

- LEON3 designs:
 - LEON3 – SPARC V8 32-bit Processor
 - Dual-core and quad-core
 - ES and PROTO devices
 - GRFPU – High performance or low area
 - L2CACHE – Level-2 cache controller
 - Timers, interrupt controller, UARTs, JTAG debug

- LEON4 design:
 - LEON4 – SPARC V8 32-bit Processor, quad-core
 - L4STAT – LEON4 statistics unit
 - L2CACHE – Level-2 cache controller
 - GRFPU – High-performance IEEE-754 Floating-Point Unit
 - Timers, interrupt controller, UARTs, JTAG debug
GR712RC First Flights
GR712RC Dual-Core LEON3FT processor

MASCOT asteroid lander, launched 3rd of December 2014 on Hayabusa-2 (JAXA)

CaSSIS (Colour and Stereo Surface Imaging System) launched 14th of March 2016 on ExoMars 2016

www.cassis.unibe.ch

CYGNSS (Cyclone Global Navigation Satellite System), eight satellites launched 3rd of December 2016

https://www.nasa.gov/cygnss
LEON3FT processor in CubeSats

CubeSats using LEON3FT technology

- **NEA Scout**
 - Marshall Space Flight Center/JPL/LaRC/JSC/GSFC/NASA
 - Near Earth Asteroid Scout
 - **JPL - SPHINX - GR712RC**
 - JPL - IRIS radio – LEON3FT IP
- **Lunar Flashlight**
 - JPL / NASA
 - Map Polar Surface Ice, search for ice in lunar craters
 - **BCT XACT – LEON3FT IP**
 - JPL - SPHINX - GR712RC
 - JPL - IRIS radio – LEON3FT IP
- **BioSentinel**
 - NASA Ames Research Center
 - BCT XACT – LEON3FT IP
 - **MODAS - Space Dynamics Lab – UT699**
 - JPL IRIS radio – LEON3FT IP - TBD
- **MarCO**
 - JPL / NASA
 - Mars telecom Relay Demo
 - InSight insertion real-time Mars relay
 - BCT XACT / XB1 Bus - LEON3FT IP
- **CuSP**
 - SwRI / NASA / GSFC / JPL
 - CubeSat mission to study Solar Particles
 - **JPL - IRIS radio – LEON3FT IP**
 - SwRI - SATYR - GR712RC
 - Southwest Deep-Space Explorer (SDX-6)
- **JUMPER**
 - JPL NASA / SwRI, LASP
 - JUpiter Magnetospheric boundary Explorer
 - **SwRI - SATYR GR712RC**
 - JPL - IRIS radio – LEON3FT IP
LEON3FT processor in CubeSats

CubeSats using LEON3FT technology

- **Inspire**
 - JPL / NASA
 - Interplanetary Nano-Spacecraft Pathfinder in Relevant Environment
 - JPL IRIS radio – LEON3FT IP

- **LunaH-Map**
 - JPL / NASA / ASU
 - Lunar Polar Hydrogen Mapper
 - BCT XACT – LEON3FT IP
 - JPL IRIS radio – LEON3FT IP

- **Lunar IceCube**
 - Morehead State University, NASA GSFC
 - BCT XACT – LEON3FT IP
 - JPL IRIS radio – LEON3FT IP

- **ORS Tech 1, ORS Tech 2**
 - JHU/APL
 - LEON3FT IP

- **Space Dynamics Labs – Pearl platform**
 - *Picosatellite Exo-Atmospheric Research Laboratory*
 - Multicore LEON3FT SBC 25 to 266 MHz
 - SDL - Modular Avionics System (MODAS) SBC

- **Blue Canyon Technologies – FlexBus / XB spacecraft bus**
 - XACT - LEON3FT IP
 - S5 - AFRL
 - ASENT - AFRL
 - RAVAN - JHU/APL
 - PlanetiQ 1-12 - PlanetiQ
 - CubeRRT - Ohio State, NASA
 - CSIM FD - University of Colorado
 - TEMPEST-D - Colorado State, JPL
 - HaloSat - University of Iowa / NASA
 - MinXX - University of Colorado, NASA
GR740 Adoption

- Primarily used with GR-CPCI-GR740 board
- Users now immediately start using all cores (different case than GR712RC)
- Different starting points for multi-core:
 - Start with bare-C images – or – Leap to using SMP Linux
 - RTEMS with AMP configurations –
 Part of this group expected to transition to RTEMS-SMP
 - VxWorks (already SMP capable since 6.7)
- Flight and development board at customers

"Adopting SpaceVPX at Los Alamos", Rob Merl and Paul Graham, MAPLD2017
Software ecosystem

Toolchains, OSs, runtimes, tools

• Available free open-source compilers and kernels:
 – **BCC**: GNU GCC compiler with LEON BSP, for standalone applications
 – **BCC2**: LLVM & GNU GCC compiler, for standalone applications
 – **RTEMS**: “Real-Time Executive for Multiprocessor Systems”
 – Linux 2.6 – 4.9

• LEON port and BSP for commercial operating systems:
 – **VxWorks 6.x/7.x**
 – **ThreadX-5.0**

• Ada support: Toolchain from AdaCore (F)
• RTEMS 4.8 EdiSoft and in-house variants at various companies
• Other OSs/environments already ported to LEON include: PikeOS, XtratuM, ...

• Tools: GRMON debugger, Eclipse IDE available, TSIM2 and GRSIM Simulators
Software ecosystem

Operating systems, verification

• Goal: You can pick any available software environment for any LEON device
• Limitations exist:

<table>
<thead>
<tr>
<th>Software</th>
<th>UT699(e), UT700, GR712RC</th>
<th>GR740</th>
<th>GR716</th>
<th>SSDP</th>
<th>LEON3/4 generic</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCC / BCC2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RTEMS</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Linux</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓ (MMU)</td>
</tr>
<tr>
<td>VxWorks</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ThreadX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

• Drivers: Provided by Gaisler as-is. Qualified drivers at customers
• Software V&V: Heavy use of TSIM2 simulator for code coverage analysis
 – GR740 and beyond have specific instructions for instrumentation – used together with trace buffer filtering to get execution traces in real time.
Toolchains update

BCC2, GCC updates, VxWorks 7, RTEMS 5, Linux 4.9

• BCC2, new bare-metal toolchain released in May 2017:
 – LLVM-4.0 support (first LLVM toolchain from CG)
 • New backend for LEON-REX 16-bit ISA (GR716)
 • Relies on Binutils for linking
 • Uses assembler and compiler from LLVM
 – GCC-4.9
 – C11 & C++11 support
 – Newlib 2.5.0
 – Multi-core ASMP support in BCC run-time (GR740, GR712RC)
 – BCC run-time reworked to improve interrupt latency and lower footprint (GR716)

• Long-term GCC-7.2 toolchain support for LEON, will be used for:
 – RTEMS-5.1
 – VxWorks 7

• VxWorks 7 release in October 2017.

• RCC-1.3 (RTEMS-5) second pre-release in October 2017. Including new GR740 BSP with SMP support funded by ESA.

• Linux 4.9 LTS release in October 2017.
Software outlook

• TSIM3
 – multi-core simulator, improved configuration, replaces GRSIM and TSIM2.

• LLVM LEON backend support
 – Planned continued collaboration with ESA. Planned for RCC-1.3 (RTEMS-5)
 – Targeted optimizations for GR712RC and GR740

• BCC2 updates
 – GCC 7.2

• GRMON-GUI
 available in 2018.
Software outlook

GRMON-GUI

• Graphical hardware debugger for LEON available in 2018 Q1.
• Built on state of the art Eclipse TCF technology used/maintained by leading embedded vendors WindRiver and Xilinx
• Responsive user interface:
 – fetching only target data displayed in GUI
 – Eclipse closely interfaced to target HW (no GDB in background)
 – new caching architecture
 – GRMON optimized for processors used in space (AT697, GR712RC, GR740, ..)
• Provides same functionality as GRMON CLI plus Graphical UI
• Integrated with CLI, execution control via CLI or GUI or mix (single-step, breakpoint, ..)
• Targets custom GRLIB ASICs, existing LEON chips and non-CPU systems
• Multi-core support. User extensible by means of eclipse plug-ins and Tcl scripts
• GUI features in short:
 – Execution threads and CPUs view (RTEMS/VxWorks/BCC)
 – Disassembly view, System view (info sys), I/O register view (info reg)
 – Optimized LEON register view
 – VT100 Tcl terminal view with tab-completion, history, etc.
 – Application terminal (UART tunnelling) view

Demo in ADCSS 2017 booth!
Hardware outlook

- GR740 FM availability
- GR716 prototype development kit
- Hardware design / IP library:
 - Architectural improvements/extensions/upgrades
 - SPARC32 line continues with the LEON5
 - New IP: High-speed serial link, memory controller, accelerators
 - HPP/GPP track vs. uC track
 - IP certifications
- “GR745”: GR740 design plus the following enhancements:
 - Architectural improvements for higher compute performance
 - Extended support for time and space partitioning
 - More efficient virtualization support, hypervisor mode in HW
 - Move to DDR2/3/4 memory for performance and capacity
 - High-speed serial interfaces (SpFI / SRIO)
 - Flipchip packaging for improved pin count and signal integrity
- HW+SW: Trace solutions
THANK YOU FOR LISTENING!