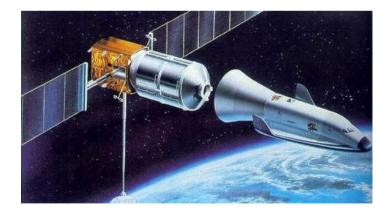

25 Years of SPARC - a personal retrospective by Jiri Gaisler

First European rad-hard processors

- Based on MIL-STD-1750
 - MAS281 (MDC281 clone): 0.5 MIPS, 3-chip, 1989
 - MA31750, new design, monolithic, 2 MIPS, 1991
- Deemed sufficient for large majority of missions


New challenges

Requirements for a 32-bit processor

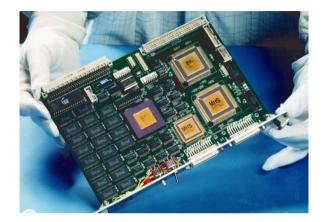
Requirements

- 10 MIPS, 1 MFLOPS, 1W/MIPS
- 100 Krad, 50 Kgates
- European source, non-proprietary
- Software support (Ada)
- Foreseen missions
 - HERMES spaceplane
 - Columbus MTFF
 - Robotics & planetary exploration

Preparation 1989 - 1990

- Two precursory studies by Saab and Sagem
 - Outcome: THOR, SPARC and MIPS recommended
- Rejected architectures
 - AMD29K, M88K, 80x86, 80960, M68000 : proprietary
 - T800: difficult to port, slow
 - ARM : poor software support

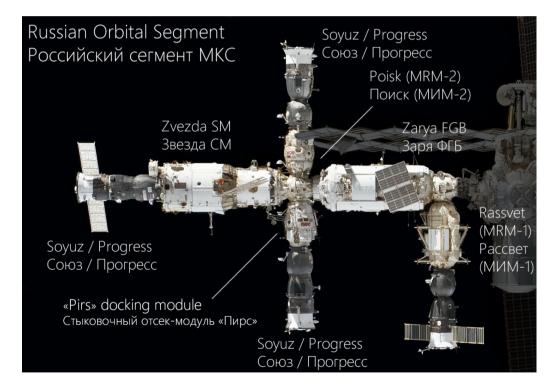
Microprocessor round-table 1990


- Short-list for selection
 - SPARC, MIPS, THOR
- 50+ attendees from 25 companies/projects
 - MBB, Aerospatial, Selenia, HERMES, Contraves, Saab, Dornier, CNES, Matra Espace, Alcatel, Alsys, Rtech, MEDL, Sagem, Sextant, BAE, Logica, Laben, DDC, MHS, MSS ...
 - 2-day meeting
- Final choice SPARC
 - Open architecture, no copyrights or patents
 - Compatible with available technology (MHS 0.8 um CMOS)
 - Cache-less operation, breadboard demonstrator

ERC32 project 1992 - 1997

- Start 1992, expected duration 3 years
- 3-chip ERC32 on 0.8 um CMOS (MHS)
- Ada compiler
- Ada tasking accelerator (ATAC)
- Simulator and real-time tools
- VHDL models for board simulation

Outcome of ERC32 project


- Project goals mostly met
 - 10 MIPS, Rad-hard, European source
 - ~ 10 iteration of silicon, ATAC canceled
 - Cost of bugs significant to first project
- Interesting facts

- TSC692E based on Meiko FPU from T800/microSPARC
- Porting of RTEMS due to delays in Ada compiler development
- Development of SIS simulator forced by delays in delivery of first ERC32 samples

First ERC32 project – DMS-R

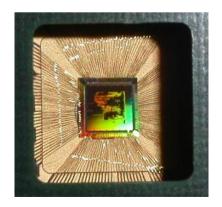
ERC32 successor

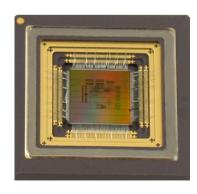
- Second round-table on processors held in 1996
 - Software compatibility with ERC32 main requirement
 - 100 500 MIPS desirable
 - Mostly seen as payload or instrument controller
 - No mentioning of SOC yet ...
- Outcome
 - Develop a single-chip ERC32
 - Define and design LEON1FT SPARC core
 - Development schedule ~ 2 years

LEON1FT project

- Develop a new SPARC V8 processor
 - Synthesizable and portable
 - 100 MIPS, 20 MFLOPS, 1 W
 - Fault-tolerant rather than hardened
- Outcome
 - Developed under Douglas Marsh fellowship in 1997/8
 - Manufactured on Atmel 0.35 um RT process in 2000
 - FT scheme validated through extensive error-injection
 - Released in open-source in 1999 (non-FT)

LEON1FT SEU testing





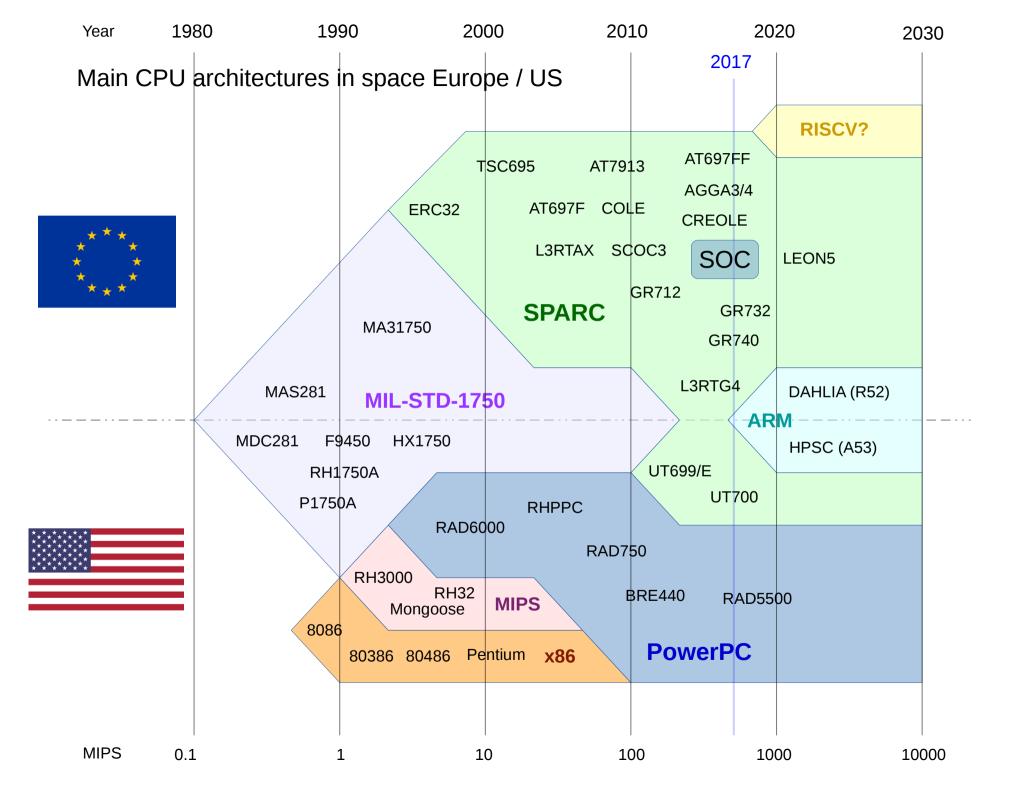
LEON2FT project (2002)

- Enhance the LEON1FT design
 - 4-way caches, MUL/DIV, DSU, AMBA, SDRAM
 - Designed by Gaisler Research, licensed to ESA
 - Open-sourced in LGPL (non-FT)
- Exclusive rights to Atmel for FT model

LEON2FT-UMC

AT697F

GR-PCI-AT697


GRLIB project (2004)

- Create a SOC platform rather than just a processor
 - LEON3 with deeper pipeline, GRFPU, MMU, SMP
 - Modular design with on-chip plug&play
 - Many additional IP cores
 - Fully owned by Gaisler
- Used in both commercial and space applications
 - LEON3FT-RTAX, GR712RC, UT699, SCOC3 ...
 - LEON4 released in 2010

25 years of **SPARC**

- Open architecture \rightarrow unrestricted use, no fees
- SPARC \rightarrow Low complexity, stable specification
- Open-source →
 - Simple prototyping and evaluation
 - Synergy effects from +100 thesis and research projects based on LEON
- Implementation
 - Robust design style, portable, modular, low complexity, FT
 - Synergy effects from commercial non-space usage
 - Low cost
- Problem areas
 - Declining software support
 - Unnecessary fragmentation
 - Performance lack due to low investments

Did we make the right choice?

