

Wireless for Intra-Satellite Communications Control Data Systems SRL

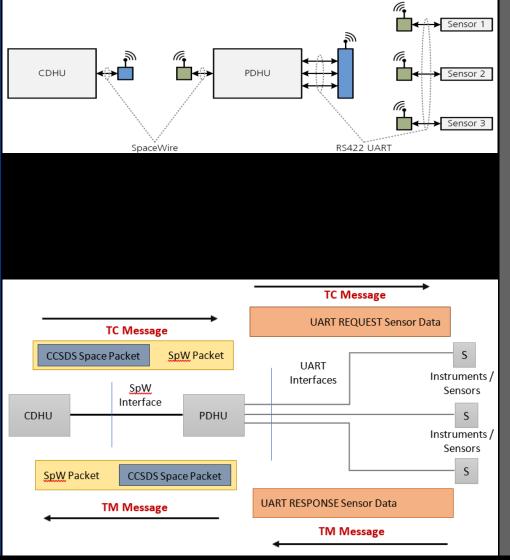
Wired Harness

Wireless for Intra-Satellite Communications

• Dry mass contribution of 10%.

- Complex AIT (Assembly Integration and Test)
- Signal leakage requires isolation for EMC
- Physical dimensions restrictions
- High cost of late design changes
- Difficult reconfiguration
- Possible failures of wires and
- connectors

Satellite data handling systems are traditionally <u>wired</u> as pointto-point or bus connections such as RS422, SpaceWire, Mil-1553b, CAN etc).


Wireless Harness

- Advantages
 - Up to 10% reduction of S/C mass Lower launch cost
 - Reduction in AIT complexity
 - Lower assembly costs
 - Increased reliability
 - Implicit redundancy
 - Lower cost for late design changes
 - Reconfiguration on the fly

- Challenges
 - Power supply needs
 - Limited channel bandwidth
 - Reliability of Service
 - No line of sight
 - Interference
 - Limited In band emissions
 - Out of band emissions
 - Multipath fading
 - Reflections

Requirements

- provided by GMV
- updated by DLR

- Low number of nodes sensors and actuators
- High volume of data from sensors
- Strict timings for actuators control (100s of msec)
- Resistant to interference from
 other equipment
- Must not interfere with other equipment
- Minimal node weight (10s of grams)
- Low power consumption (10s of mW)

Wireless for Intra-Satellite Communications

W I R E L E S S

Previous work

Wireless Compliance Institute (WCI)

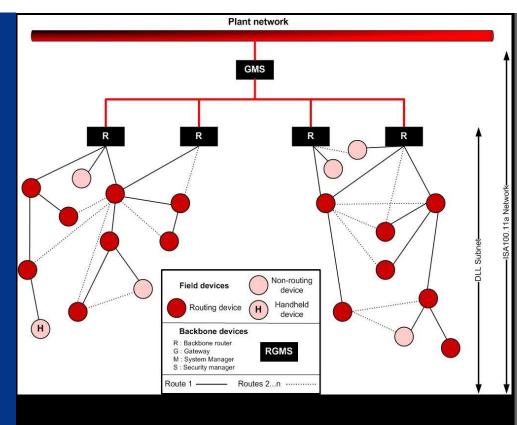
- develops the specifications and compliance procedures for ISA100 Wireless
- driven by major industrial players (GE, Honeywell, Yokogawa)
- Widely applied in Oil&Gas

Consultative Committee for Space Data Systems (CCSDS)

- develops recommendations for communications and data systems
- 11 member agencies (ESA, NASA, DLR, JAXA, etc.)
- Recommends ISA100 Wireless as a communication protocol

ESA study from 2013 investigates 802.15.4 UWB as a physical layer for intra-S/C communications

 NASA study from 2012 recommends ISA100 as an upper layer wireless protocol

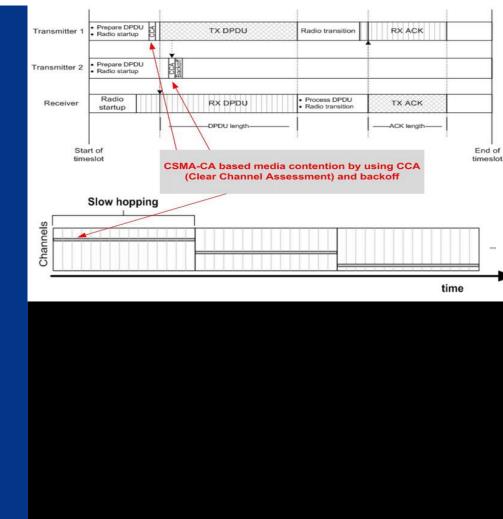

802.15.4 UWB-IR Ultra Wide Band

		Center Frequency (MHz)	y Bandwidth (MHz)	
1		3494.4	499.2	
2	3993.6		499.2	
3		4492.8	499.2	
4		3993.6	1331.2	
5		6489.6	499.2	
6		6489.6	1331.2	
Power Spectral Density				
	-	I → W _{NB}	frequency	
	4	— W _{UWB} — ►		

Short impulse transmission technique

- A span of six RF bands from 3.5GHz to 6.5GHz
- Support for data rates of
 110kbps, 850kbps and 6.8Mbps
- Short on-air time due to the high data rates
- Low power consumption and extended battery lifetime
- 2ns impulse results in 500 MHz channel bandwidth
- Ability to deal with severe multipath environments
- Ideal for highly reflective RF environments

ISA100 Wireless



Wireless for Intra-Satellite Communications

Determinism

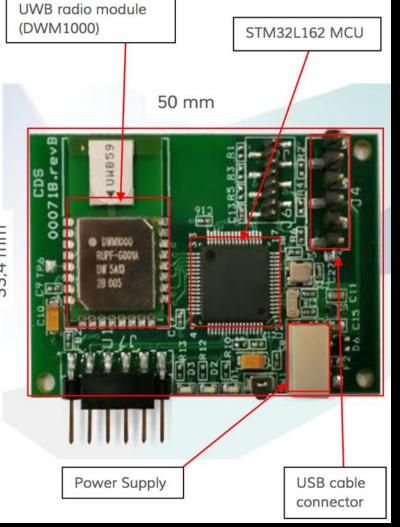
- TDMA (10ms timeslots)
- Optional CSMA-CA
- Path Diversity
 - Mesh topology
 - Graph/source routing
 - Duo-cast redundancy
- Low Power
 - Sleep mode for routing devices
 - Security
 - Link layer security
 - End to end security
- Flexibility
 - Changeable PHY
 - Variable TS duration

ISA100 Wireless

Wireless for Intra-Satellite Communications

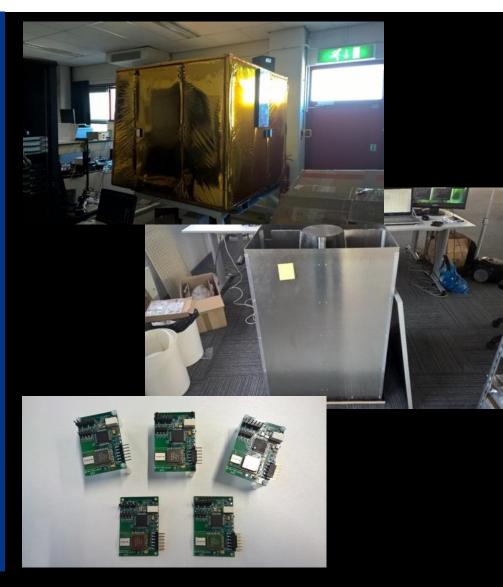
• TDMA

- Predetermined TS
- 10ms TS standard
- 5ms TS in development
- 0.1 ms synchronization
- Link ACK in the same TS
- Latencies in 100's ms


CSMA-CA

 \bullet

- Shared TS
- Less deterministic
- Lower latencies (ms)
- Combination of access techniques
 - QoS features
 - Optimal channel usage


VN360 UWB modem

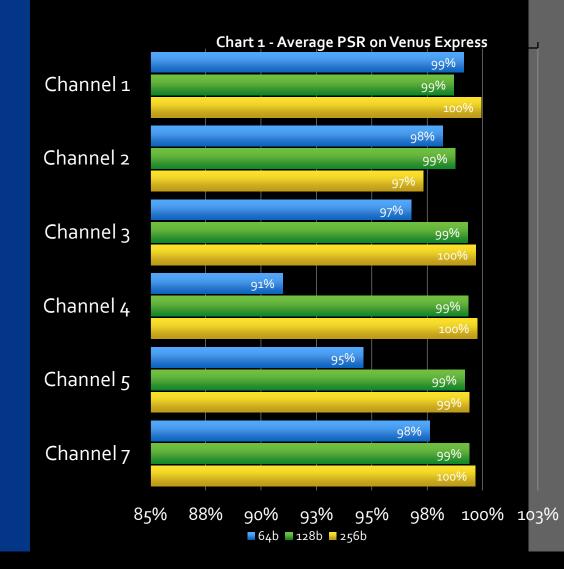
- Ultra Wide Band
- Decawave UWB transceiver
- ARM processor (TRL4)
- ISA100 Wireless communication stack
- TDMA based
- CSMA-CA option with shared TS
- 250ms super-frames
- 10ms TS
- 5ms TS in development
- SpaceWire and RS422 interfaces in development

Test and Validation (TRL4)

Wireless for Intra-Satellite Communications

6 nodes network

- 1 BBR/SM
- 2 sensors
- 1 actuator
- 1 provisioning device
- identical HW

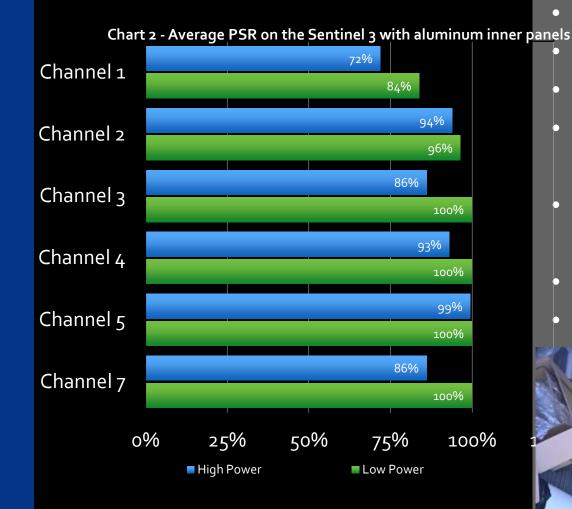

Functional Test performed on 2 satellite mock-ups

- Venus Express (at ESTEC)
- Sentinel 3 (at CDS)

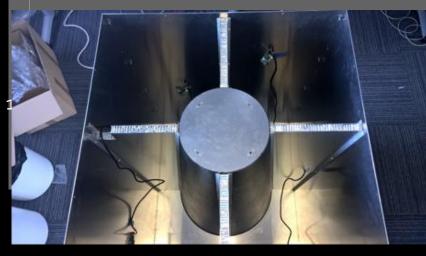
EMC Tests performed in anechoic chamber

Wireless for Intra-Satellite Communications

Functional Test Results (Venus Express mock-up)

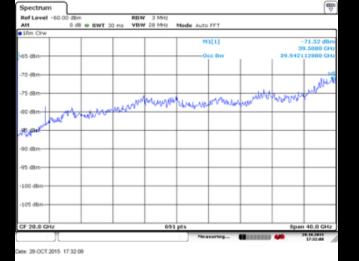


- No retries used
- 3 preambles tested: 64b, 128b and 256b
- 256b preamble performed best
- No significant difference between channels

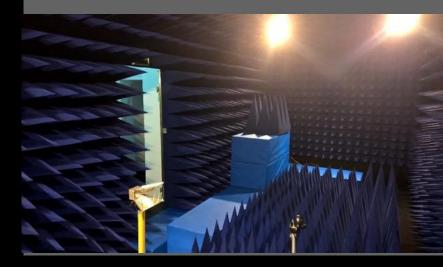

Wireless for Intra-Satellite Communications

Functional Test Results (Sentinel 3 mock-up)

• No retries used


- ³ 3 preambles: 64b, 128b and 256b
- 256b preamble performed best
- Carbon fiber vs aluminum inner panels tested
- Carbon fiber had better results (100%)
- High power vs low power test
- Low power had better results

Wireless for Intra-Satellite Communications


EMCTests

Chann el	Measured power (dBm)	Measured power (dBµV)	E-field (dBµV/m)	Limit (dBµV/m)
1	-67.77	39.23	79.36	120
2	-73.86	33.14	79.00	120
3	-79.37	27.63	79.23	120
4	-73.65	33.35	79.21	120
5	-71.71	35.29	109.82	120
7	-66.16	40.84	115.37	120

Type of EMC tests performed

- In band emissions
- Out of band emissions
- Susceptibility

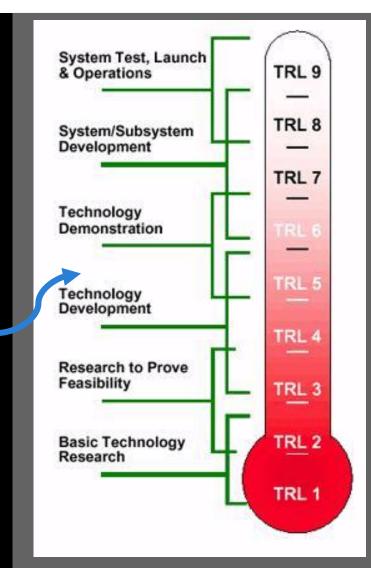
Wireless for Intra-Satellite Communications

W I R E L E S S

Test Conclusions

Node placement inside the mock-up cavity does not influence the overall performance of the UWB transmissions

- UWB transmissions are affected by the material composition of the mock-up: carbon fiber walls perform better that aluminum plated walls
- Round openings between cavities yield better results than square openings
- Low power transmission provides better results than high power transmissions in the highly reflective intra spacecraft environment
- All UWB channels can be used with similar results
- The overall results show that the UWB technology is suitable for replacing the intra-satellite sensor wired communication


- ISA100 UWB Kit includes:
 - 4 x VN360 UWB nodes
 - 1 x VN360 gateway
 - 5 x FTDI USB cable
 - SW Test Application
 - User manual

Wireless for Intra-Satellite Communications

Roadmap

2019-2020 IOD 2018-2019 Radiation tests (TRL6) 2017-2018 Environmental tests (TRL5)

2014-2016 Laboratory prototype (TRL4)

Questions

[

Thank you