

Generic GNSS function in SAVOIR

Avionics, Data, Control and Software Systems (ADCSS)

Presented by Co-authors:

J. Rosello (EOP- Φ MT , EO Future Missions

(TEC-EDD, OBC & Data Handling) W. Gasti

(RUAG Sweden) T. Hult

(17-Oct-2017)

ESA UNCLASSIFIED - For Official Use

GNSS function

Facts today:

- GNSS offers **continuous** availability of Position, Velocity, Time (PVT), mainly in the Earth Orbit
- Multiple GNSS Space Applications, mainly in LEO, but also in Transfer and GEO orbits:
 - Absolute & Relative Navigation
 - Scientific Instruments (Radio Occult: MetOp-SG, SAC-C/D, ... + GNSS-R: UK TDS-1, CYGNSS, ...)
 - → Space GNSS Receivers are a **key technology** for different type of space missions + applications

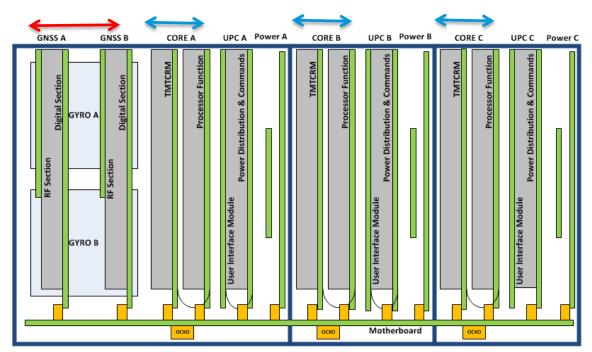
Consolidated trends:

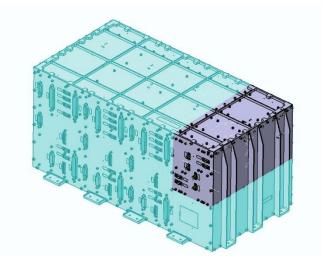
- More signals from new GNSS constellations (modernized GPS, Galileo, Beidou, Glonass)
 - → increase in robustness (e.g. less loss of tracking, faster reacquisition) & a bit better accuracy
- Miniaturisation in electronics enables further integration of avionics
 - → more room for instruments → mission outcome increases
 - reduction of development/integration (cost and time)

Therefore:

- ➤ In practice, GNSS functions are already being integrated in the OBC Units.
- > HW architectures and SAVOIR need to adapt accordingly

ESA UNCLASSIFIED - For Official Use




Example-1: TAS-I integrating GNSS in OBC

Done for Telecom Satellites

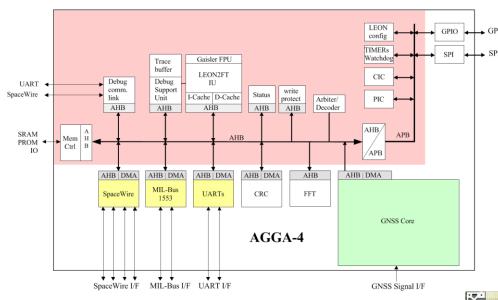
- Artes 5.1 , "Feasibility of AGGA-4 inside the central computer", ESA Contract C4000108120)
- followed-up for Neosat

- Triple Redundant SMU
- **Dual** (N+R) GNSS Functions

Pictures Courtesy of TAS-I, Extract from: AGGA-4 days (27-Sept-2016)

ESA UNCLASSIFIED - For Official Use

ESA | 17-Oct-2016 | Slide 3


Together

ahead. RUAG

AGGA-4 (Advanced GPS-Galileo ASIC)

RUAG

Designed by Airbus GmBH

Available as ASSP from ATMEL since 2014

GNSS core:

LEON2FT + GSFPU: 428 + 122 k gates = 0.55 Mgates

Clocks + I/Fs+ backend:

Design:

Pads+others:

1.4 Mgates

352 pins CQFP

and

4 InputModules

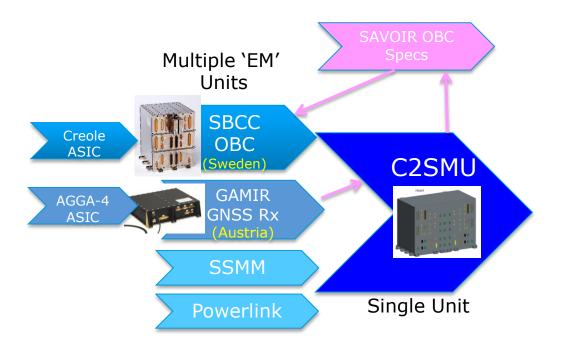
PLLs

LEON2FT

Total:

LEON2FT
Processor

(Die size 13x13 mm,


ESA UNCLASSIFIED - For Official Use incl. Pads) ESA | 17-Oct-2016 | Slide 4

Mgates

Study Definition and Breadboarding of C2SMU

Together ahead. RUAG

ESA Contract 4000118320 with RUAG Sweden (KO in 3Q-2016) C2SMU = Complex & Complete SMU

C2SMU Feasibility and BB Study

- Requirements + Architectural Design
- Integration + Analysis/Testing key modules
- Development Plan

<u>Development in follow-up study in 2018</u> (funding TBC)

ESA UNCLASSIFIED - For Official Use ESA | 17-Oct-2016 | Slide 5

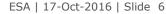
C2SMU contract content

Four tasks and reviews:

- Consolidation of preliminary requirements
- Analysis and Architectural design of the C2SMU
- Breadboarding of integrated key functions in a demonstrator and validation \rightarrow Nov. 2017
- Overall results Analysis and recommendation for the new C2SMU

Deliverables

- C2SMU Specification
- Architectural Design report
- Demonstrator description
- Test plan, test procedure, test report
- Development plans for Demonstrator and full C2SMU

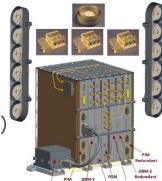


+

Background for C2SMU

The SAVOIR OBC specification has been elaborated over a couple of years and is now used at least as reference document in ESA programmes (PLATO)

The following extensions have been discussed within RUAG:

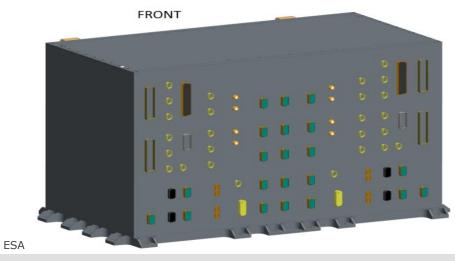

- Handling the CCSDS File Delivery Protocol also on the S/X band link
- Providing additional capabilities for planetary missions (ADCSS 2016)
- Integrating a GNSS receiver handling the Time Reference and Position Sensor functionality

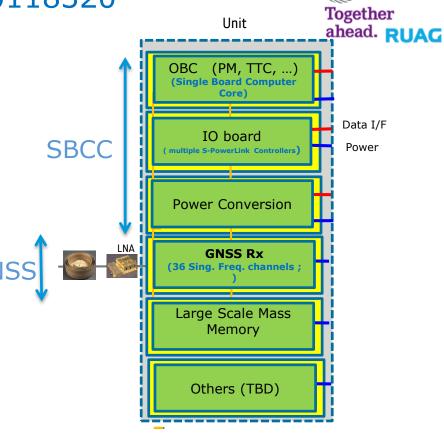
RUAG has two studies related to the extensions:

- Miniaturized Integrated Avionics for Planetary Landers (MINAVIO)
- Compact and Complete Spacecraft Management Unit (C2SMU)

plus the experience of integrating four GNSS GAMIR boards (from RUAG-Austria)

into the GNSS Radio Occultation Instrument for MetOp-SG

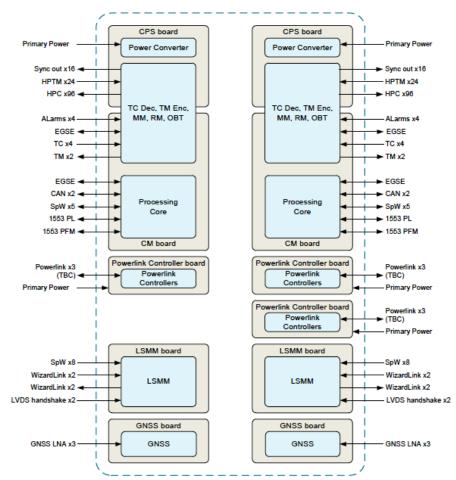

ESA UNCLASSIFIED - For Official Use


ESA | 17-Oct-2016 | Slide 7

C2SMU study – ESA Contract 400118320

Integrating

- OBC + Reconf.Module + IO board from earlier studies
- GNSS receiver from RUAG-A (GAMIR)
- Large Scale Mass Memory
- + Anticipating PowerLink for RTU functions



|+|

ESA | 17-Oct-2016 | Slide 8

C2SMU preliminary architecture

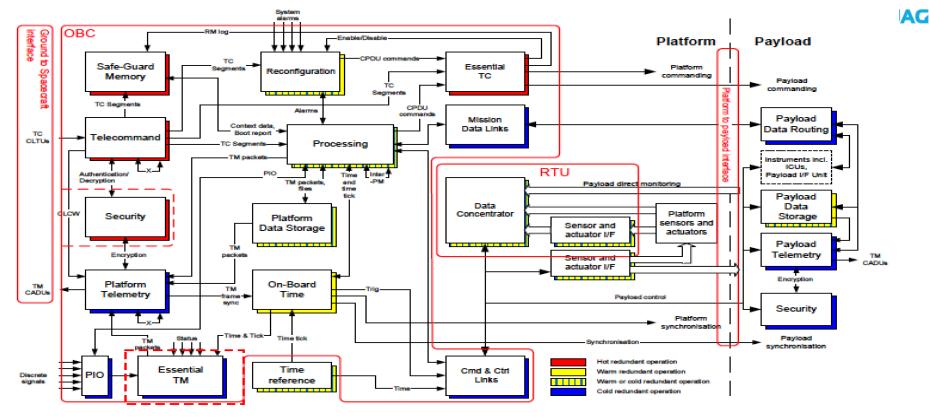
ESA UNCLASSIFIED - For Official Use ESA | 17-Oct-2016 | Slide 9

C2SMU feedback to SAVOIR

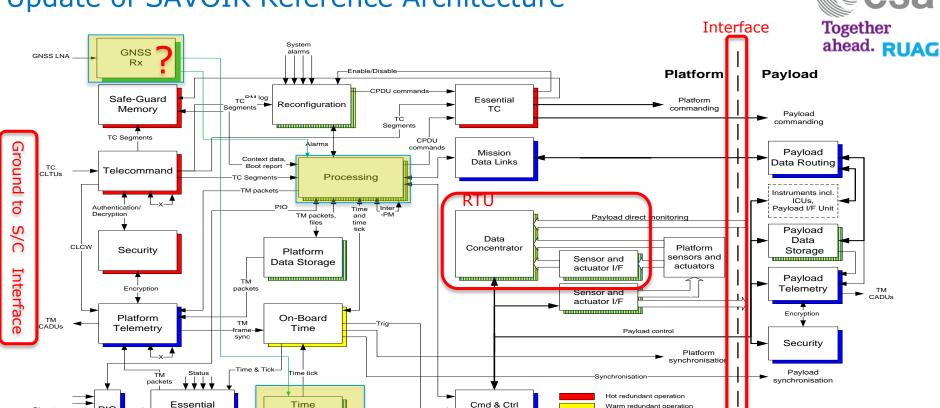
Recommendation for SAVOIR-SAG

GNSS Receiver a **new optional** function (mainly for Earth Orbiting) to be added to SAVOIR OBC Spec.

- When the GNSS Receiver function is integrated in the OBC, then to be specified and interfaced in accordance with the two already existing functions in the SAVOIR OBC:
 - **Time Reference** Function with extra input from the GNSS Receiver function
 - **Processing** Function to perform the position... etc. function



+


Current SAVOIR Reference Architecture

ESA UNCLASSIFIED - For Official Use ESA | 17-Oct-2016 | Slide 11

Update of SAVOIR Reference Architecture

ESA UNCLASSIFIED - For Official Use ESA | 17-Oct-2016 | Slide 12

Links

Cold redundant operation

reference

TM

Process for GNSS function into OBC SAVOIR spec.

Should be similar to what has been done for earlier SAVOIR work

The main stakeholders prepare the updates in a consensus mode

- Reviewed internally at ESA
- Updates
- Public review
- Updates
- Publication

|+|

Suggested additional requirements for GNSS

- To provide position only or position and attitude
- To support single or dual frequency (GPS L1/L5, Galileo E1/E5), up to 24/18 satellites tracked with requirements on how tracking is configured and performed
- To provide support for Precise Orbit Determination
- Requirements on parameter modifications
 - Acquisition, tracking, TM sampling, PVT solution
- Diagnostics requirements on patching and dumping

ESA UNCLASSIFIED - For Official Use

+

Performance requirements

- Reference clock accuracy
- Signal C/No minimum levels for acquisition (autonomous and guided) and tracking
- PVT accuracy, GPS or Galileo only
- PVT accuracy, GPS and Galileo in combination
- Pseudorange measurement errors
- Carrier phase measurement errors
- Time To First Fix

ESA UNCLASSIFIED - For Official Use

Conclusions

- GNSS is well established in all Earth orbiting satellites.
- Miniaturisation enables integration of OBC and GNSS functions into just one Unit
- GNSS Receiver a **new optional** function to be added to SAVOIR OBC Spec.
- When the GNSS Receiver function is integrated in the OBC, then to be specified and interfaced in accordance with the two already existing functions in the SAVOIR OBC:
 - **>> Time Reference** Function with extra input from the GNSS Receiver function
 - **» Processing** Function to perform the position... etc. function
- Should be similar to what has been done for earlier SAVOIR work. The main stakeholders prepare the updates in a consensus mode

