

Lightning Imager ESA LI team – Pierre KOKOU, performance engineer

11th ADCSS Workshop 19th October 2017, ESTEC

ESA UNCLASSIFIED - For Official Use

Meteosat Third Generation (MTG) Lightning Imager (LI)

The Lightning Imager, aboard the MTG-I satellites, will bring full hemispheric near real-time lightning detection capabilities.

Applications

- 1. Nowcasting for lightning (e.g. for the aviation)
- 2. Early warning for severe weather events
- 3. Refine meteorological models
- 4. Other uses to be created by the user community...

ESA UNCLASSIFIED - For Official Use

11th ADCSS: Lightning Imager

■■ ▶ == + ■ + ■ = ≔ = 1 ■ = = = = = = **0** ■ **■** = = **: : : : : : :**

Slide 2/18

Contents

How to detect lightning from space?

- 1. Detection principle
- 2. Sources of false events

Why does on-board processing power matter?

- 3. LI filters
- 4. Trade-off on-board processing power
- 5. A glimpse about potential future developments

· _ II 🛌 ## ## II 💻 🚝 _ II II = _ ## 🛶 🔯 II = ## ## ## |#|

Detection principle: What does a lightning look like?

As seen from ground:

esa

As seen from space:

ESA UNCLASSIFIED - For Official Use

11th ADCSS: Lightning Imager

Slide 4/18

Detection principle: main LI features

ESA UNCLASSIFIED - For Official Use

Constant observation of the same scene

➤ Satellite in GEO

Lightning have a specific spectrum

Monochromatic observation in the 777.4 nm wavelength (neutral O)

Average footprint of lightning is ${\sim}90\ km^2$

- \succ Size of pixel at SSP \sim 5 km
- ≻4.7 M pixels to cover the FOV

Lightning is short in time: $\sim 1 \text{ ms}$

Acquisition frequency = 1000 Hz

Lightning is a sudden peak of energy

> Need to detect a transient over a ~constant background

11th ADCSS: Lightning Imager

Detection principle: Real-Time Pixel Processor (RTPP) CBa

For each pixel:

The 4.7 M pixels are processed every ms by 16 ASICs ATMEL 150 nm

ESA UNCLASSIFIED - For Official Use

11th ADCSS: Lightning Imager

■ +• 88 ■ 🔄 = 88 88 = = 12 12 = 12 18 = 14

Slide 6/18

Sources of false events

Measurement₁probability

100

120

<u>Illustrative scenario</u>: *on pixel* [*x*,*y*], *the following radiances are measured*:

2) Micro-vibration (jitter): the vibrations of the satellite were such that, at time T+1, a brighter scene was observed by the pixel

3) Other sources: energetic particles, RTS, ghosts...

ESA UNCLASSIFIED - For Official Use

11th ADCSS: Lightning Imager

Slide 7/18

Contents

How to detect lightning from space?

- 1. Detection principle
- 2. Sources of false events

Why does on-board processing power matter?

- 3. LI filters
- 4. Trade-off on-board processing power
- 5. A glimpse about potential future developments

· _ 88 🛌 ## 88 🗯 ## 88 🗮 🔚 88 🚍 2 88 88 🚍 ## 🚳 88 🚍 ## ## I+I

LI filters: long story short

	Name	Goal	Hardware
RTPP	Real Time Pixel Processor	Detection step – trigger events	ASIC
SDT	Single DT filter	Eliminate (noise) FEs	FPGA
MVF	Micro-Vibration filter	Eliminate (jitter) FEs	PowerPC
JR	Jitter Reconstruction	Reconstruct potential jitter to eliminate its contribution	
STC	Spatio-Temporal Coherency	Eliminate (noise) FEs that are alone in a [0.5s, 50km] radius	On-ground processing centre
	Other filters	Eliminate FEs due to noise, particles, RTS, ghosts	

Filtering algorithms purpose:

- reduce the number of false events (FEs);
- while keeping most of the true events (TEs).

ESA UNCLASSIFIED - For Official Use

11th ADCSS: Lightning Imager

Slide 9/18

■ ■ ■ + ■ + ■ = ≡ = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

LI filters: Single DT filter (SDT)

<u>Goal: eliminate "1-pixel" false events</u>

A pulse is likely to illuminate multiple adjacent pixels.

If the pixels around the central pixel having generated the event do not have *enough* extra energy, then the event is discarded.

CNDR = Cumulative Neighbouring Delta Radiance

This algorithmic step is executed on FPGA RTAX 2000

ESA UNCLASSIFIED - For Official Use

11th ADCSS: Lightning Imager

Slide 10/18

LI filters: Micro-Vibration Filter (MVF) [1/2]

LI filters: Micro-Vibration Filter (MVF) [2/2]

PowerPC 7448 [e2V] (Freescale 90nm SOI) @ 960 MHz

- Performance 2.3 MIPS / MHz (Dhrystone 2.1) 2300 MIPS @ 1 GHz- 32 KB L1 cache for
- Instructions: instruction parity protected
- 4 Integer Units (IUs) / A 5-stages Fully IEEE Compliant FPU (single/double precise ops)
- 32 KB L1 cache for Data / 1 MB L2 cache ECC protected
- 4 Vector units (SIMD machine) AltiVec[™]

The SBC also executes other tasks: clustering, packetizing...

ESA UNCLASSIFIED - For Official Use

RTPP

SDT

MVF

JR

STC

...

11th ADCSS: Lightning Imager

Slide 12/18

· = ■ ► = = + ■ = ≔ = 1 ■ ■ = = = = ■ ■ ■ ■ = = = ₩ = |+|

LI filters: Jitter Reconstruction (JR)

Goal: reconstruct the vibration to remove its contribution

The events can be analysed to estimate *a posteriori* what was the jitter of the satellite, and hence remove the potential contribution to the signal.

ESA UNCLASSIFIED - For Official Use

11th ADCSS: Lightning Imager

Slide 13/18

Image: Imag Image: Image:

LI filters: Spatio-Temporal Coherency (STC)

Goal: eliminate isolated false events

Lightning occur in groups.

If an event is alone in time and space, it's probably a false event

ESA UNCLASSIFIED - For Official Use

Slide 14/18

*

Contents

How to detect lightning from space?

- 1. Detection principle
- 2. Sources of false events

Why does on-board processing power matter?

3. LI filters

- 4. Trade-off on-board processing power
- 5. A glimpse about potential future developments

· _ 88 🛌 ## 88 🗯 # 88 🗯 🔚 88 🚍 2 88 88 🚍 🖼 📾 🔯 88 🚍 🐏 🕷

Trade-off on-board processing power

More processing power means more/better filtering on-board, so that more events can be processed on-board → detection threshold can be lowered to try to detect weaker lightning pulses

ESA UNCLASSIFIED - For Official Use

11th ADCSS: Lightning Imager

Slide 16/18

The set of th

A glimpse about potential future developments

 Once the first LI is flying, one could imagine use machine learning on a batch of cross-verified true events to find new & more effective ways to distinguish true events from false events.

- Once a new decision rule has been found, it has to be checked that on-board processing hardware capable of executing it is available.
 - > Need for dedicated hardware architecture?
 - (e.g. processing unit developed to specifically execute neural networks => check TPU and AI accelerator on wikipedia)

ESA UNCLASSIFIED - For Official Use

11th ADCSS: Lightning Imager

Slide 17/18

Thanks for your attention! Questions? Now or at the coffee break?

ESA UNCLASSIFIED - For Official Use

11th ADCSS: Lightning Imager

Slide 18/18

· _ II 🛌 :: 🖛 + II 🗯 🚝 2 II II = 2 II :: 🖬 🛶 🔯 II 🚍 :: II 💥 🛶 IVI