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Motivation in a Nutshell: More complex HW and SW

Facts

– End of federated architectures and arise of Integrated architectures 

• E.g., IMA (avionics), AUTOSAR (automotive), IMA-SP (space)

• Increased reliability, reduced SWaP costs

– Increased overall system’s value provided by software (electronics)

• More and more critical functionalities provided by software
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Motivation in a Nutshell: More complex HW and SW

Facts

– End of federated architectures and arise of Integrated architectures 

• E.g., IMA (avionics), AUTOSAR (automotive), IMA-SP (space)

• Increased reliability, reduced SWaP costs

– Increased overall system’s value provided by software (electronics)

• More and more critical functionalities provided by software

Consequences 

– Software’s increasing performance needs

• E.g. 100x according to arm in automotive (from 2016 to 2024)

– Use of more aggressive HW designs: multi- and many-cores (MMCs)

Needs

– Improved WCET analysis and timing V&V in general

– Exploiting parallel hardware: programming models and accelerators
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Outline

1. Multi-core and Many-core (MMC) contention

• Concept and proposed solutions

2. A probabilistic angle to WCET estimation

• Concept and maturity of existing tools

3. The way ahead: accelerators and parallel programming 

models in critical systems

• Challenges and our work in this domain
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MULTICORE AND MANYCORE (MMC) 

CONTENTION
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MMCs

I love them (high resource usage)

I hate them (contention  low predictability)

– The sole presence of a task in a core affects the execution time of 

other tasks in other cores 
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Measurement-Based Timing Analysis

Conservative approach for contention analysis

– Every access of the task under analysis suffers the worst  contention

• Each requests waits for all other N-1 requests

τd

τa A - - - - - - B B

τb A B B

τc A - - B B

A - - - - B B

τa

τb

τc

τd

busarb
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Contention modelling: approach 1

Micro-benchmark (µb)

– Simple benchmarks putting desired 

load on shared resources 

– Bus, memory bandwidth, cache
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Contention modelling: approach 1

Micro-benchmark (µb)

– Simple benchmarks putting desired 

load on shared resources 

– Bus, memory bandwidth, cache

Approach

– Pre-characterize the expected load 

at operation (load-op)

– Run each application against µbload-op

Benefits

– Tighter WCET estimates than the conservative approach

– Still measurement based  no static modelling

– Characterization in isolation

• No need to run target applications simultaneously

• WCET analysis starts independently for each application before integration
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Contention modelling: approach 2

Hardware monitors (Perf. Monitoring Counters)

– Provide information about ‘events’ on resource usage
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Contention modelling: approach 2

Hardware monitors (Perf. Monitoring Counters)

– Provide information about ‘events’ on resource usage

Approach

– Derive the access latency to the resources with µb 
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Approach
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Contention modelling: approach 2

Hardware monitors (Perf. Monitoring Counters)

– Provide information about ‘events’ on resource usage

Approach

– Derive the access latency to the resources with µb

– Run each application in isolation and read PMCs

– A Multicore Contention Model combines PMCs and derives the 

contention tasks cause each other (ΔA, ΔB)

Difference w.r.t. Approach 1

– Factors in the worst possible alignment of requests
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What mμbt can offer you?

"If you have a problem, if no one else 

can help, and if you can find them, 

maybe you can hire: The A-Team."
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What mμbt can offer you?

"If you have a problem, if no one else 

can help, and if you can find them, 

maybe you can hire: The A-Team."

"If you have a problem with multicore 

timing analysis, you can find us: 

MμBT team" francisco.cazorla@bsc.es
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What mμbt can offer you?

Analysis of new multicore platforms

– Determining the time predictability characteristics

of different processors (Worst-case perf. analysis)



21

What mμbt can offer you?

Analysis of new multicore platforms

– Determining the time predictability characteristics

of different processors (Worst-case perf. analysis)

Evidence gathering for timing V&V on multicore

Micro Benchmarks

Test configurations

results



22

What mμbt can offer you?

Analysis of new multicore platforms

– Determining the time predictability characteristics

of different processors (Worst-case perf. analysis)

Evidence gathering for timing V&V on multicore

Task scheduling for multicores

– How task can be scheduled factoring in contention?

Target platforms

Micro Benchmarks

Test configurations

results

Freescale
- T2010, T2040, T2080 

- P4020, P4080, …

ARM boards
- Zynq7000

- UltraScale+

LEON
- LEON3

- LEON4

AURIX 
- TC277 family
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A PROBABILISTIC ANGLE TO 

WCET ESTIMATION

23
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From deterministic to probabilistic view of WCET

Execution time of a program
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From deterministic to probabilistic view of WCET

Execution time of a program
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– Statistical Analysis fits the nature of observed ET distributions

Renounce the absolute worst case

– Control resource-interference 

(mμbt-based approach)

Attach probability to events

– Those below 10-x per hour  irrelevant

– instead of… if something can happen 

then assume it happens
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Role of randomization

Phases:

– Analysis phase: carry out test campaigns & derive WCET estitmates

– Operation phase: Actual use of the system

Confidence on testing: 

– Ensure that the worst-case conditions exercised or approximated

– The user

• Can only follow what happens at a high level

• Can’t follow Low-level events (cache placement, bus occupancy, 
floating-point operation duration)
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Role of randomization

Phases:

– Analysis phase: carry out test campaigns & derive WCET estitmates

– Operation phase: Actual use of the system

Confidence on testing: 

– Ensure that the worst-case conditions exercised or approximated

– The user

• Can only follow what happens at a high level

• Can’t follow Low-level events (cache placement, bus occupancy, 
floating-point operation duration)

Idea: 

– Randomize low-level events

– Their worst-behaviour (or set of behaviours)

will have a probability of appearance

• Just carry out enough tests!!!

– Randomization implemented at HW and SW
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Cache randomization

Example cache placement:

Deterministic system
– How does the user get confident that experiments capture bad (worst) 

mappings?

– Memory mapping varies across runs, but not in a random manner

Randomized systems
– Make N runs 

– We can derive 

• the probability of the observed mappings @ operation

• the probability of unobserved mappings
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Airbus IMA application. Hardware Randomization

– PikeOS A653 person. &  hypervisor 

– MBPTA HW randomized FPGA 

• 4-core LEON3 on FPGA

• IL1/DL1 caches (6KB 4-way)

• Random repl.: iL1,dL1,iTLB,dTLB

• Random placement IL1 and DL1
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ESA application. Hardware Randomization

Thrust Vector Control by the European Space Agency (ESA)

– Fixed priority scheduler with 3 periodic tasks

– Automatically generated C code from high-level model of the closed-

loop system

– Run bare-metal

– Sensor data acquisition, actuator control in X-axis and in Y-axis
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ADS application. SWRand

High-critical control application that 

controls Mirror Displacements

SWRAnd

– <2% on number of instructions

– No impact on execution time

2%

MOET



34

What we can offer you?

SWRand technology

– Source-to-source compiler that generates functionally equivalent 

source versions of the input code with random memory layout

– Compiler

• Support to implement memory layout randomization features in                                       

your preferred compiler, linker and OS

.src

.src

.src

.src

TASA

compiler

compiler

compiler

… …

.exe

.exe

.exe
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SWRand technology

– Source-to-source compiler that generates functionally equivalent 

source versions of the input code with random memory layout

– Compiler

• Support to implement memory layout randomization features in                                       

your preferred compiler, linker and OS

HWRand technology

– LEON3+ platform with randomization                                                  

features implemented

– http://www.gaisler.com/index.php/products/processors/leon3

.src

.src

.src
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TASA

compiler

compiler

compiler

… …
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THE WAY AHEAD: ACCELERATORS AND 

PARALLEL PROGRAMMING MODELS

36
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Why accelerators?

Critical systems get increasingly complex

– New Advanced Driving Assistance Systems (ADAS) in automotive

– Autonomous Guidance, Navigation and Control (GNC) in space

Current μ-controllers cannot provide required performance

– Safety standards (ISO 26262, ECSS): strict timing, reliability, safety
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Why accelerators?

Critical systems get increasingly complex

– New Advanced Driving Assistance Systems (ADAS) in automotive

– Autonomous Guidance, Navigation and Control (GNC) in space

Current μ-controllers cannot provide required performance

– Safety standards (ISO 26262, ECSS): strict timing, reliability, safety

Embedded Heterogeneous Architectures are the solution

– High Performance

– Low Power

– So far only used in non-critical markets, e.g. mobile phones

Many potential options for the automotive market:

– NVIDIA PTX

– Qualcomm recently acquired NXP/Freescale

– Other Embedded CPUs/GPUs: ARM, Imagination Technologies

– FPGAs: Xilinx, Intel (acquired Altera)

– Many-cores (Kalray MPPA, Texas Instruments Keystone etc)
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The beginning of a new era in critical systems: Challenges

Several options for embedded heterogeneous platforms

…but no certification/qualification yet

– High-Cost and Effort 

– Only justified by customer interest and high-volumes
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The beginning of a new era in critical systems: Challenges

Several options for embedded heterogeneous platforms

…but no certification/qualification yet

– High-Cost and Effort 

– Only justified by customer interest and high-volumes

Industry: Which heterogeneous platform is better for my 

computationally intensive system?

– No Open representative ADAS or avionics applications and 

benchmarks

– EEMBC’s ADASMARK Benchmark still under development

– Several industrial and academic works, all targeting specific hardware, 

closed-source developments

We need open representative accelerator applications and 

benchmarking studies:

– Trompouki et al, An Open Benchmark Implementation for Multi-CPU 

Multi-GPU Pedestrian Detection in Automotive Systems, ICCAD 2017
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Accelerators in critical systems: Challenges (2)

Timing is essential for critical real-time systems

Almost no studies so far in the embedded domain

– Still we struggle with the WCET of CPUs

– Highly parallel  highly unpredictable

– Optimised for throughput, not latency

– Few works in the desktop domain

• Not the same: Fundamental architectural differences  Low-Power

Potential Solutions:

– Custom Designs 

– Software only at programming and runtime level
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Accelerators in critical systems: Challenges (3)

Programmability

Different programming model compared to traditional CPU 

programming

Are the existing tools 

– suitable for critical systems? Certification, libraries …

– efficient to use? Extract the available performance from the hardware?

– enabling programmer’s productivity?

– re-usable from platform to platform? Functional and Performance 

portability?

Parallel Programming Models
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Parallel Programming Models

Based on the principle that developers specify what the 

application does and not how it is done

– Parallel computation is not fully controlled by the programmer, but by 

run-time mechanisms

Improves productivity in terms of providing better

programmability, portability and performance …

… at the expense of complicating deriving safety 

guarantees

Our research focuses on OpenMP and GPU parallel

programming models
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Why OpenMP?

Mature language constantly reviewed and augmented 

(last release Nov 2015)

Programmability
– Support for fine-grain data- and task-parallelism very convenient to 

develop real-time embedded systems

– Allows incremental parallelization 

Performance and efficiency
– Similar to other models (e.g. TBB, CUDA, OpenCL and MPI)

– Features an advanced accelerator model for heterogeneous 

computing

Portability
– Supported by many chip and compiler vendors (Intel, IBM, ARM, TI, 

Kalray, Gaisler)
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OpenMP and Safety 

OpenMP enables guaranteeing safety requirements

– Time predictability

• Reasoning about the timing behaviour of the parallel 

execution

– Worst-case response time analysis by means of schedulability

analysis techniques

– Dynamic and static resource allocation approaches supported

– Safety and correctness

• Ensuring that the correct operation in response to its inputs

• Support reliability and resiliency mechanisms in terms of

– Compiler analysis techniques for checking parallel 

programming correctness, avoiding deadlock and race 

conditions scenarios

– Error handling methodologies
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What we can offer you:

OpenMP:

Development framework (compiler and run-time) supporting 

different multi-core and many-core parallel platforms

– Kalray MPPA, TI Keystone, NGMP+ RTEMS SMP (under the contract 

“Parallel Programming Models for Space Systems”

ESA Contract No. 4000114391/15/NL/Cbi/GM)

Research to include OpenMP within Ada is being conducted

Definition of a new OpenMP specification group to support 

safety requirements within the OpenMP language committee

– Join Us!
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What we can offer you:

OpenMP:

Development framework (compiler and run-time) supporting 

different multi-core and many-core parallel platforms

– Kalray MPPA, TI Keystone, NGMP+ RTEMS SMP (under the contract 

“Parallel Programming Models for Space Systems”

ESA Contract No. 4000114391/15/NL/Cbi/GM)

Research to include OpenMP within Ada is being conducted

Definition of a new OpenMP specification group to support 

safety requirements within the OpenMP language committee

– Join Us!

Embedded GPUs/FPGAs:

Unified programming (compiler+runtime) between different 

accelerators: CUDA, OpenCL, Graphics and Compute APIs

Embedded GPU Benchmarking for critical domains
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Conclusions

1. Multi-core and Many-core (MMC) contention

• Concept and proposed solutions

2. A Probabilistic Angle to WCET estimation

• Concept and maturity of existing tools

3. The Way Ahead: accelerators and parallel programming 

models in critical systems

• Challenges and our work in this domain
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