

Laser Study of SETs in 65nm Bulk Technology

Maximilien Glorieux, Adrian Evans, Dan Alexandrescu {mgl,adrian,dan}@iroctech.com

> Project Officers Véronique Ferlet-Cavrois Cesar Boatella Polo

CNES/ESA Radiation Effects Final Presentation Days 2017 ESTEC - 9-MAR-2017

Funded under ESA Contract : 4000107761/13/NL/CL

Outline

- Previous Work 65nm Test Vehicle
- Test Facilities
 - > CNES
 - > NRL
- > PWMT Experiments
- Elementary Transistors
- Conclusions

Acknowledgements

The work being presented would not have been possible without the help of :

Facilities <u>CNES</u> : Kevin Sanchez, Guillaume Bascoul <u>NRL</u> : Stephen Buchner, Jeff Warner

De-lidding and Parts Preparation <u>Cisco</u> : Shi-Jie Wen, Rick Wong

ESA : Véronique Ferlet-Cavrois

Previous Work – 65nm Test Vehicle

SET65 Activity

- Dedicated test-chip (4mm²) in ST 65nm bulk technology
- Contains multiple experiments for characterizing SETs
 - Elementary transistors
 - Chains of gates, with on-chip measurement (PWMT)
 - Single Event Multiple Transient (SEMT)
 - Dynamic Applicative Measurements (DAMSEL)
- Tested under heavy-ions at RADEF(Jyväskylä)

ESA/CNES Final Presentation Days

Laser Study SETs in 65nm Bulk Technology

Open Questions from HI Testing

- Heavy-ion tests provided extensive data
 But some questions remained:
- - For gates with broadening/narrowing, how many of the gates in the chain contribute?
 - Understand small (100x smaller) parasitic cross-section

Measured Effect of Broadening

Laser Test Facilities

CNES – SPA Laser

- CNES facility, Toulouse, France
- 80 MHz Meridan 2 system, wavelength=1064nm
- Pulse picker selects individual pulses
- Maximum energy per pulse ≈2.5 nJ
- Scanning is performed by mirrors
- 3 optical lenses
 - > 2.5x (5.9 μ m resolution, 3 mm x 3 mm scan area)
 - > 20x (0.78 μ m resolution, 400 μ m x 400 μ m scan area)
 - > 50x (0.39 μ m resolution, 200 μ m x 200 μ m scan area)

Laser Bench at CNES

De-Lidded Test-Chip

ESA/CNES Final Presentation Days

CNES – Handshaking

- Trigger provided by signal generator
- Position (X,Y) provided to user as analog voltages
- > User provides
 - Digital PASS/FAIL indication
 - Optional : Analog PASS/FAIL Indication

Comparing Laser Facilities

	CNES (SPA)	NRL (TPA)
Wavelength	1064 nm	590 nm
Scanning	Mirrors	XYZ Stage
Fire Rate	Variable < 40 MHz	Fixed – 1 KHz
Optical Image	Directly with laser	Separate camera
Control	Signal Generators	PC with MatLab
User Interface	Analog/Digital signals	RS-232

PWMT

IVX Chain Scan (CNES)

Scan of IVX9 chain with 70% energy at CNES – 20x lens

- Pulse width remains consistent along the chain
- Individual gates can be clearly identified
- Measurement circuit differentiated from gate chains (black areas)
- Small parasitic cross-section identified (shown in red)

TECH

IVX Chain Scan (NRL)

- x-range = 26.4 μm, xstep = 0.3 μm
- y-range = 15.0 μm, ystep=0.5 μm
- note chains run vertically in these scans

Inverter Pulse Widths

- > AVG/MAX pulse widths similar trend
- Lasers PW are comparable to HIs
- Provides correlation between laser and HI

ESA/CNES Final Presentation Days

- > In broad-beam, significant difference in CS observed depending on state
- Broadening/narrowing clearly visible in laser scans
- > Majority of detector is shown to be "insensitive" ; small sensitive area

BF2 Broadening/Narrowing

Elementary Transistors

Elementary Transistors

4 types of elementary transistors placed in small arrays
 NMOSX9, NMOSX27, PMOSX9, PMOSX27

> NRL facility has support for advanced scope triggering

- Scope is triggered by laser
- > Waveform acquisition is automated
- > Waveform processing (averaging, peak, etc) automatic

Individual SET Captures

CNES : PMOS X27, 70% energy

- > NRL
 - Automated scope interface
 - Data recording, averaging and on-line analysis

NRL: PMOS X27, 363pJ (average of 10 captures)

NRL : XTOR Scan (PMOS X27)

Collected Charge (fC)

TECH

IK

XY scan of PMOSX27 xtor Pulse energy = 363 pJ

ESA/CNES Final Presentation Days

Laser Study SETs in 65nm Bulk Technology

NRL: XTOR Scan (NMOS X27)

Collected Charge (fC)

TECH

XY scan of NMOSX27 xtor Pulse energy = 363 pJ

ESA/CNES Final Presentation Days

Laser Study SETs in 65nm Bulk Technology

Conclusions

Pulsed laser is effective for understanding circuit behaviours
 Both SPA and TPA performed well

> Transistors, gates and full digital circuits

> At 65nm, individual gates and xtors can be targeted

CNES system

- Scan speed is fast
- Direct imaging from actual laser
- > NRL system
 - Good support for interface with scope
 - Scanning, data-acquisition highly automated