

FP Days March 2017 Introduction to CNES part

space environment and radiation transport

Robert ECOFFET Space environment and new components office DSO/AQ/EC

07-03-2017

« My God, space is radioactive ! » Ernie Ray, 1958

Thanks

Many thanks to ESA's

Space Environments and Effects (TEC-EPS) section Component Space Evaluation and Radiation Effects (TEC-QEC) section For their invitation to a joint event

"FP Days" have been organized with TEC-QEC since 2009 First time we do the same with TEC-EPS

Particular thanks to Ali Zadeh, Véronique Ferlet-Cavrois, Alessandra Costantino, Marco Vuolo (ESA) and Françoise Bezerra (CNES)

Space environment R&D at CNES

Mostly done through the "R&T" (research and technology) program

- Bulk of it in the "MT" objective (micro-technologies and environment)
- Technical axis "MT3" "space environment"
 - Space radiation and plasma knowledge and modelling (DSO/AQ/EC)
 - Radiation hardness assurance incl. radiation transport codes (DSO/AQ/EC)
 - Radiation effects on electronic components (DSO/AQ/EC ++)
 - Space environment effects on materials (DSO/TB/TH, DSO/AQ/MP)
 - Contamination (DSO/AQ/LE)
 - Spacecraft charging (DSO/TB/EL)
 - Space debris (DSO/DV/ISL, DSO/TB/SM)
- Complimentary actions on other lines of the R&T program
 - May be on "platforms", "telecom", "Earth observation" and other lines
- Associates many CNES departments and offices
- Close partnership with ONERA

Links with ECI (at CNES : "RCS")

Main orientations : space data

High level goal : direct access to space environment data

Be able to have <u>first-hand</u> knowledge of space environment

- \rightarrow Develop and fly radiation "monitors" and technology modules
 - → ICARE on SAC-C (ICARE), MIR (SPICA), ISS (SPICA-S)
 - → ICARE-NG on SAC-D, JASON-2, JASON-3 (CARMEN-1, -2, -3)

Gather other data through bilateral agreements

- \rightarrow UCL/CSR (EPT)
- \rightarrow NASA, NOAA (mostly open but need support of the PIs)
- \rightarrow LANL, USAF, JAXA, MSU
- \rightarrow ONERA IPODE data base

 \rightarrow ~ 50 series, LEO/MEO/HEO/GEO/IP, > 3 solar cycles

Develop data processing procedures and routines

ICARE-NG

Cones

CARMEN is multi-sensors mission based on a main instrument (ICARE-NG) dedicated to study the influence of space radiation on advanced components and able to interface and manage some others external sensors.

Evaluation of radiation ageing in operation In orbit monitoring / Help to anomaly investigation Improvement of radiation environment modelling Improvement of RHA methods and requirements Solar activity index

SPECTROMETER

Measurement ranges : electrons \rightarrow 0.250 -6MeV / protons \rightarrow 8 - 300MeV, 3 detectors, 5 analog acquisition chains with programmable levels, gain and accumulation time.

Experiment MODULE Devices under test for SEE monitoring, on board dosimeters.

Electrical I/F ~20-42V up to 70V regulated power supply bus, MIL-1553B or serial interfaces for TM/TCs.

Implantation Internal or External (with possible window), FoV \rightarrow 3 x conical 26°half angle + homogenous wall in front of the baseplate. From 420 to less than 20bits/s (with a possible on board memory capability).

Data rate Budget (*)

	Size (mm ³⁾	~205 x 118-138 x 96	
3	Mass (kg)	2.0 – 2.8	
	Power (W)	6 to 10	

(*) With Experiment Module (MEX) and without any other experiment

MISSION HERITAGE

- ICARE on SAC-C Argentinean satellite (launch 11/2000, 11 years operational)
- Argentinean satellite (launch in 06/2011).
- CARMEN-2 -> ICARE-NG aboard JASON-2 satellite (launched in 06/2008)
- CARMEN-3 → ICARE-NG + AMBER (Electrostatic Charging Sensor) aboard JASON-3 satellite (launch in 2015-16)
- - more than 22 years on various orbits

ICARE-NG detectors

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 3, JUNE 2011

ICARE-NG spectrometer energy channels

•On JASON, ICARE-NG looks through the satellite wall

•On SAC-D, ICARE-NG looked through a window in the satellite wall

Ele	ectrons	Protons		
Integral (MeV)	Differential (MeV)	Integral (MeV)	Differential (MeV)	
>1.6	3.6	>64	27.5	
>1.67		>69	86	
>1.74		>76	89	
>1.81		>80	91	
>1.88		>83	93	
>1.95		>87	95	
>2.02		>93	98	
>2.09		>94	104	
>2.6		>97	105	
		>104	112	
1 mars		>108	114	
All man		>113	120	
	-	>115	126	
	HACK .	>119	132	
		>127	142	
		>138	155	
JASO	N-2	>163		

>186 >222 >292

Elect	trons	Protons		
Integral (MeV)	Integral (MeV)	Integral (MeV)	Differential (MeV)	
> 0.249	> 1.093	> 54	12.9	
> 0.270	> 1.135	> 56	18.6	
> 0.299	> 1.192	> 60	31	
> 0.320	> 1.226	> 65	47.3	
> 0.342	> 1.300	> 66	61	
> 0.363	> 1.359	> 70	63	
> 0.384	> 1.508	> 73	64	
> 0.413	> 1.657	> 75	65	
> 0.455	> 1.823	> 80	67	
> 0.505	> 1.974	> 81	69	
> 0.554	> 2.106	> 85	74	
> 0.604	> 2.254	> 90	75	
> 0.653	> 2.404	> 100	80	
> 0.703	> 2.567	> 105	81	
> 0.752	> 2.680	> 115	85	
> 0.802	> 2.770	> 130	90	
> 0.870	> 2.850	> 160	100	
> 0.895	> 2.930	> 190	115	
> 0.930	> 3.010		2 × 1	
> 0.986	> 3.090		A Carlo and a c	

> 3.170

> 3.250

> 0.994

1336 km, 66°

Main orientations : modelling & user tools

High level goal : <u>optimize</u> radiation belt specifications

Improve radiation belt science and modelling (CRATERRE)

- → Improve science, techniques & "expert tools" (*not* for the engineer)
 - → Physics-based dynamic model (Salammbô)
 - → Data assimilation techniques

Develop <u>user-oriented</u> products and services

- → Develop radiation belt engineering models
 - \rightarrow Make the models available to final users \rightarrow OMERE (TRAD)
- → Develop space environment tools & services
 - \rightarrow Space data visualization \rightarrow IPSAT
 - → Radiation belts activity indices (EUMETSAT, CNES)

All along the watchtower

Data from ~50 couples instrument / satellite over more than 3 solar cycles In-house data + international co-operations, Europe, USA, Russia, Japan LEO/MEO/HEO/GEO/IP

Combination of the 2

Space and time propagation using dynamic modelling (Salammbô) and data assimilation

She's like a rainbow

Development of local models

Voodoo child

Global model V0 (2016) pasting, V1 (2017) smoothing, V2+ extension

Global Radiation Earth ENvironment

Example : IGE 2006

Developed by ONERA in the early 2000's with CNES support (R&T) and through collaborations with LANL and JAXA Introduced in ECSS E-ST-10-04C in 2008 as a standard for GEO orbit Effectively used in specifications ~2015 (NEOSAT)

Research → Publications, reviews (1st round of discussions)

- → Acknowledgement by scientific community
- → Uplift to standards (2nd round of discussions)
- \rightarrow Adoption by industry may need a trigger

 \rightarrow ~15 years from early research to application

Space data visualization : IPSAT

Ionising Particle in Space Analysis Tool - IPSAT V4.0

Web site designed for:

🥘 🧟 🍭 🌒

Email to web site manager (Bourdarie Sebastien)

https://craterre.onecert.fr/ipsat/index.php

Space weather : radiation belt indices

https://craterre.onecert.fr/home.html

cnes

Main orientations : OMERE

High level goal : space environment and effects tool on a desktop

Engineering – oriented

 \rightarrow Each year, orientations defined within a core user group \rightarrow CNES, TRAD, ONERA, AIRBUS-DS, TAS, CEA, ESA

Standard models, new models (ONERA, Ax9,...)

Idem for radiation effects

→ Diffusion vector for our R&D outputs & those of our partners

Engineering tools : OMERE

http://www.trad.fr/OMERE-Software.html?lang=en

Cones

Main orientations : radiation engineering

High level goal : optimize radiation design margins

Evaluate the impact of parameters on environment specifications \rightarrow e.g. anisotropy Y/N, orbit description,...

Evaluate the impact of new models on environment specifications \rightarrow e.g. A9/AP9 but also new ONERA models

Assess and improve radiation transport techniques Assess and improve margin evaluation at each step of RHA process Improve the definition of interface specifications

