PAMELA Data Exploitation

Pamela a payload for Antimatter Matter Exploration and Light-nuclei Astrophysics

ESA & CNES Final Presentations : Space Environments and Radiation Effects on EEE components 6 March 2017

- Despite the significant improvements made in the last decades, the modeling of the near-Earth proton radiation environment is still incomplete, with largest uncertainties affecting the description of the high-energy (>50-100 MeV) fluxes in the inner zone and the South Atlantic Anomaly (SAA).
- ✓ These are exactly the observational objectives that can be addressed by the **PAMELA** experiment at LEO
- This work is aimed to provide a comprehensive characterization (energy spectra, angular & spatial distributions, etc.) of the highenergy (>70 MeV) geomagnetically trapped proton fluxes in the SAA, and a preliminary comparison with the current empirical models

The PAMELA experiment

Main requirements \rightarrow high-sensitivity particle identification and precise momentum measure

Size: 130x70x70 cm³ GF: 21.5 cm² sr Mass: 470 kg Power Budget: 360W

Resurs DK-1 satellite: Semi-polar (70° inclination) and elliptical (350÷610 km altitude) orbit

PAMELA scientific goals

Precise measurements of protons, electrons, their antiparticles and light nuclei in the cosmic radiation

- Research for Dark Matter indirect signatures
- Exploration of the particle/antiparticle symmetry
- Investigation of the cosmic-ray origin and propagation mechanisms in the Galaxy, the heliosphere and the terrestrial magnetosphere
 - detailed measurement of the high energy particle populations (galactic, solar, geo-magnetically trapped and albedo) in the near-Earth radiation environment

PAMELA measurements at LEO

- Semi-polar (70 deg) and elliptic (350 - 610 km) orbit
 - polar caps (low energy CRs & SEPs)
 - geomagnetically trapped (SAA) and albedo (all latitudes)
- Precise rigidity measurements
 - wide range (≥400 MV)
- Good angular resolution (~2 deg)
 - possibility to investigate flux anisotropies
- Sensitive to particle composition
 - p/pbar, e+/e-, light nuclei

This work is based on the proton data acquired by PAMELA between July 2006 and September 2009

Data analyzed in the frame of **adiabatic theory** of particle motion in the geomagnetic field

Gyro motion:

- V x B acceleration leads to gyro motion about field lines
- frequencies ~kHz
- associated 1st invariant µ, relativistic magnetic moment:

 $\mu = \frac{p^2 \sin^2 \alpha}{2m_0 B}.$

pitch angle
$$\alpha$$
: $\tan \alpha = \frac{V_{\perp}}{V_{\perp}}$

Bounce motion:

- As a particle gyrates down field line, the pitch angle increases as B increases
- Motion along field line reverses when pitch angle reaches 90° (mirror point)
- period ~sec

EART

 associated 2nd invariant K longitudinal invariant:

 $\mathcal{K} = \int_{-l_{-}}^{+l_{m}} p_{\parallel} dl$

Drift motion:

- Gradient in magnetic field leads to drift motion around Earth: east for electrons, west for protons/ions
- period ~minutes
- associated 3rd invariant φ, magnetic flux:

$$\Phi = -\frac{2\pi B_E R_E^2}{L}$$

า

Trajetory tracing analysis Trapped vs albedo components

Trajectories of all selected protons are propagated <u>back and forth</u> from the measurement location with no limit on tracing time/path

stably-trapped protons perform several drift cycles (>4) around the Earth without intercepting the absorbing atmosphere limit (40 km). In addition:

They satisfy <u>adiabatic conditions</u>:

 $\omega_{\rm gyro} >> \omega_{\rm bounce} >> \omega_{\rm drift}$

 Results account for the <u>breakdown of trapping at high</u> <u>energies</u> (<4 GeV), as consequence of either large gyroradius or non-adiabatic trajectory effects

On the contrary, **albedo** proton trajectories intersect the atmosphere (40km), and can be classified into:

- **quasi-trapped** (trajectories similar to those of stably-trapped, but limited lifetimes)
- un-trapped, including a short-lived (precipitating) and a long-lived (pseudotrapped or *penumbral*) components

Re-entrant albedo populations

Adriani et al., JGR – Space Physics, 120, 2015

Pitch-angle anisotropy

 $\alpha = \tan^{1}(\frac{v_{\perp}}{v_{\perp}})$

Trapped fluxes in the SAA region are strongly anisotropic due to the interactions with the atmosphere

- narrow pitch-angle distribution peaked at 90 deg equatorial pitch angle
- From the 1° adiabatic invariant conservation:

$$\frac{\sin^2 \alpha}{B} = \frac{\sin^2 \alpha_{eq}}{B_{eq}} = \frac{1}{B_m} = const$$

where B_m is the magnetic field at mirror points.

• The equatorial value α_{eq} is a convenient reference point.

atmosphere

Flux intensities are properly estimated accounting for the flux anisotropic distribution (SAA)

At former stage, proton fluxes are evaluated as a function of geographic position X=(Lon, Lat, Alt) and particle rigidity R and α pitch-angle with respect to the geomagnetic field:

- The relationship between local (ϑ, φ PAMELA frame) and magnetic (α, β) angles describing particle direction, depends on the satellite orientation Ψ with respect to the geomagnetic field.
- PAMELA's effective area is rigidity dependent due to the bending effect of the magnetic spectrometer.
- **No assumption on** α distribution is done (e.g. by using sampling fuctions such as $sin^n \alpha$)

Finite gyro-radius effects

- Finite gyro-radius effects are not negligible at PAMELA energies
 - Gyro-radius of tens/hundreds km, depending on magnetic field intensity and proton energy
 - Guiding line approximation no longer valid for higher energies
 - the spatial scale of the magnetic field is not much smaller than the gyro-radius
 - East-West effect
 - Relatively small in our data due to PAMELA small aperture, and since PAMELA vertical axis is mostly directed towards the zenith
- Consequently, measured flux intensities are shifted to the corresponding guiding center locations

Adriani et al., ApJL 791:L4, 2015

columns: same energy bins rows: same altitude bins

Stably-trapped integral flux (m⁻²s⁻¹sr⁻¹) averaged over the pitch angle range covered by PAMELA, as a function of geographic coordinates, evaluated for different energy (columns) and guiding center altitude (rows) bins.

Flux results Adiabatic invariants

Adriani et al., ApJL 791:L4, 2015

Proton integral fluxes (m⁻²s⁻¹sr⁻¹) as a function of the second *K* and the third Φ adiabatic invariant, for different kinetic energy bins (see the labels).
 Results for the different populations are reported (from left to right): stably-trapped, quasi-trapped, un-trapped and the total under-cutoff proton sample.

Adriani et al., ApJL 791:L4, 2015 Flux results Equatorial pitch angle vs L-shell

Proton integral fluxes (m⁻²s⁻¹sr⁻¹) as a function of equatorial pitch angle and McIlwain's *L*-shell, for different kinetic energy bins (see the labels). Results for the different populations are reported (from left to right): stably-trapped, quasi-trapped, un-trapped and the total under-cutoff proton sample.

Trapped fluxes

Comparison with semi-emphirical models

Stably-trapped differential fluxes (GeV⁻¹m⁻²s⁻¹sr⁻¹) compared with predictions from **AP8-min** (Sawyer & Vette 1976) and **PSB97** (Heynderickx et al. 1999) semi-empirical models, denoted with dashed black line and the solid blue line respectively. Model calculations from the **SPENVIS** on-line system (Heynderickx et al. 2000).

Ae9Ap9Gui Satellite Model Plot		
Run Name: PAMELA	Directory:	PAMELA Browse
Model: AE9 / AP9 Model Mode @ Mean	▼.	Advanced Options Flux/Fluence Type Integral
 Perturbed Mean (1-999) Monte Carlo (1-999) # Runs 		Differential Advanced Model Settings
Include Plasma Energy Levels	Shield	Advanced Model Options
(MeV) (MeV) 0.04 50.0 0.07 60.0 0.10 80.0 0.25 100 0.75 200 1.00 300 2.50 1200 2.50 1200 2.00 700 2.50 1200	Depths mm 0.10 0.20 0.40 [-Add-]	Pitch Angles: 88.5, 85.5, 82.5, 79.5, 76. Generate Geomag/Adiabatic Output File Model Percentiles Mean 75th Other Percentiles: Median 95th Output File Formatting Time Format: Year Mon Day Hr Min Sec
3.50 v [-Add-] v All All All	Coordinate System: GO2 v km v Inverted order (lat,lon,dist) GD2 : Geodetic alt(km), lat(deg), kon(deg) Data Delimiter: comma v	
		Close

Ae9Ap9_version_1.20.003 (Windows) https://www.vdl.afrl.af.mil/programs/ae9ap9

Fluxes estimated over a5-dimensional grid:- Lat, Lon, Alt, E, and local pitch angle α

Same binning used for the PAMELA fluxes

Energy integrated intensities based on **geographic coordinates** are evaluated by averaging the directional fluxes over the full/ available local pitch angle range

NB: the limited pitch-angle coverage of PAMELA must be taken into account when comparing with other data sets

Pitch-angle averaged fluxes measured by PAMELA

AP9 fluxes averaged over the local pitch-angle range 0-180 deg

AP9 fluxes averaged over the local pitch-angle range available to PAMELA

In general PAMELA and AP9 fluxes have quite similar distributions, but AP9 mean intensities are about 1 order of magnitude larger than PAMELA ones. The discrepancy increases up to 2 orders of magnitude at highest kinetic energies, where AP9 results are obtained through model extrapolation.

AP9 fluxes averaged over the local pitch-angle range available to PAMELA

Trapped fluxes Comparison with theoretical models

Adriani et al., ApJL 791:L4, 2015

10

Stably-trapped differential flux (GeV⁻¹m⁻²s⁻¹sr⁻¹) at geomagnetic equator compared with the calculation by **Selesnick et al. (2007)** for the year 2000. Spectra are reported as a function of the 1st adiabatic invariant M, for sample values of K (2nd adiabatic invariant) and L^{*} (Roeder's parameter) invariants.

M [GeV/G]

A. Bruno

10⁻¹

Differential energy spectra outside the SAA region measured for different bins of magnetic latitude (see the labels).

Results for the different proton populations are shown: quasi-trapped (**blue**), precipitating (green), pseudo-trapped (red) and interplanetary (**black**).

Adriani et al., JGR – Space Physics, 120, 2015

The discovery of geomagnetically trapped antiprotons

Adriani et al., ApJL, 737:L29, 2011

Similar to trapped protons, trapped antiprotons are mainly produced by the decay of albedo antineutrons (CRANbarD mechanism, Selesnick et. al. (2007))

PAMELA & Space Weather solar cycles 23 and 24

- Measurement of Solar Energetic Particle (SEP) events
 - first direct measurement of ~relativistic SEP spectra
 - first direct measurement of SEP angular distributions
 - cross-calibration of the GOES proton detectors (EPEAD/HEPAD)
- Investigation of geomagnetic effects during magnetospheric storms induced by large CME events
 - direct measurement of the related geomagnetic cutoff variations
- Measurement of particle-dependent solar modulation effects
- Measurement of Forbush decrease effects
- Studies related to Corotating Interaction Regions (CIRs), etc.

Solar energetic particle events Investigation of flux anisotropy

Geomagnetic effects the 14 Dec 2006 magnetospheric storm

Adriani et al., Space Weather, 14, 2006

PAMELA Data Exploitation

maximum suppression

Latitude [deg]

Latitude [deg]

PAMELA Data Exploitation Summary & conclusions

- The low-altitude proton population was analyzed and classified into geomagnetically trapped and albedo (quasi-trapped, un-trapped) components.
- Flux anisotropies were properly taken into account, by evaluating the instrument directional response as a function of the spacecraft orientation with respect to the local geomagnetic field.
- Maps of high-energy (>70 MeV) proton fluxes were provided, by using both geographical and adiabatic invariants coordinates.
 - PAMELA results improve the description of the trapped protons at lower altitudes (down to L~1.1 R_E) and at higher energies (up to E~4 GeV), where current models suffer from large uncertainties.
- Results were compared with the predictions of the theoretical and empirical proton models available in the same energetic region (AP8, PSB-97, AP9).

Future developments

- Analysis of trapped proton data acquired by PAMELA after September 2009
- Analysis of magnetospheric electrons, positrons and light nuclei
- Development of a **PAMELA model** for the high-energy radiation at low Earth orbits
 - intepolation, smoothing algorithm, related uncertainties, etc.
 - extrapolation of measured fluxes in the phase-space region not covered by PAMELA (e.g. extrapolatation of the pitch-angle fluxes to the equator for the higher L-shells)

References

- O. Adriani et al. (2011), *The discovery of geomagnetically trapped cosmic-ray antiprotons*. In: Astrophysical Journal Letters 737.2. doi: 10.1088/2041-8205/737/2/L29.
- O. Adriani et al. (2014), *The PAMELA Mission: Heralding a new era in precision cosmic ray physics*. In: Physics Reports 544.4, pp. 323-370. doi:10.1016/j.physrep.2014.06.003.
- O. Adriani et al. (2015), *Trapped proton fluxes at low earth orbits measured by the PAMELA experiment*. In: Astrophysical Journal Letters 799.1. doi: 10.1088/2041-8205/799/1/L4.
- O. Adriani et al. (2015), *Reentrant albedo proton fluxes measured by the PAMELA experiment*. In: Journal of Geophysical Research A: Space Physics 120.5, pp. 3728-3738. doi: 10.1002/2015JA021019.
- O. Adriani et al. (2015), *PAMELA's measurements of magnetospheric effects on high-energy solar particles*. In: Astrophysical Journal Letters 801.1. doi: 10.1088/2041-8205/801/1/L3.
- O. Adriani et al. (2016), *PAMELA's measurements of geomagnetic cutoff variations during the 14 December 2006 storm*. In: Space Weather 14.3, pp. 210-220. doi: 10.1002/2016SW001364.
- A. Bruno, et al. (2016). *Geomagnetically trapped, albedo and solar energetic particles: Trajectory analysis and flux reconstruction with PAMELA*. Adv. Space Res., doi:10.1016/j.asr.2016.06.042.
- A. Bruno, et al. (2016). *The May 17, 2012 solar event: back-tracing analysis and flux reconstruction with PAMELA*. J. Phys.: Conf. Ser. 675 032006.