

Comparison of TNID calculation methods- FASTRAD® 3.7

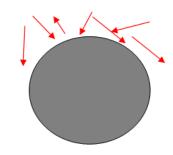
P. Pourrouquet, A. Varotsou and A. Privat (TRAD)

D. Standarovski (CNES)

- Different calculation methods exist for TNID:
 - What is the impact of the method choice?
 - Are they equivalent?
- Follows a similar R&T study for TID Monte Carlo calculation using FASTRAD [RADECS 2016, Pourrouquet et al., Comparative Study Between Monte-Carlo Tools for Space Applications]
- Release of a TNID Monte Carlo module in the latest FASTRAD version
 - Taking into account the detector material

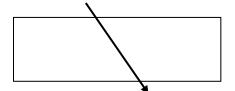
- Calculation methods & radiation models definition
- Calculation results
 - RT methods
 - RMC comparison
- Conclusions

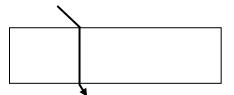
Calculation methods & radiation models definition



Ray-Tracing calculation methods

Input TNID depth curves

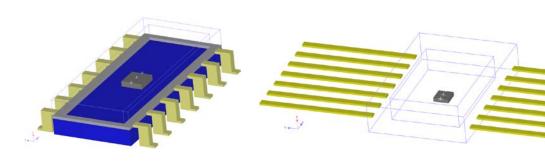




Calculation methods

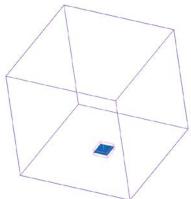
Slant path

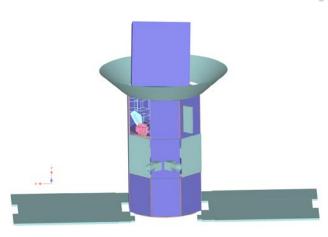
Normal path

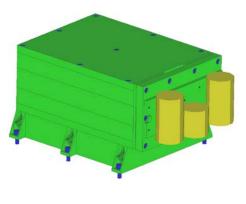

Component models

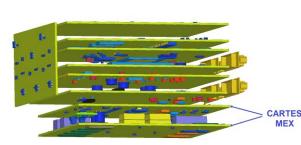
Silicon die

Realistic packages




3D Models


Satellite & equipment shielding models


Equivalent Aluminum boxes

Realistic satellite platform

Calculation results

Ray Tracing results

Calculation method impact, RT or RMC, on TNID (FASTRAD 3.7)

Reference for all comparisons: Solid sphere / Slant path

 Comparison using different methods for TNID depth curve and RT calculations

TNID depth curve	Slab + normal incidence		Slab + isotropic incidence	
RT method	Slant path	Normal path	Slant path	Normal path
Simple satellite Mean Difference	1%	61%	-34%	4%
Realistic satellite Mean Difference	8%	62%	-39%	8%

No effect of detector location on results

RMC / RT comparison

Different geometrical complexities

Satellite	Electronic parts	RMC/RT Difference	
equivalent satellite	Silicon die w/o package	-4%	Density different from Al
	Metal package (Iron)	17%	different interactions
	Plastic package	6%	=> Secondary creation
	Ceramic package	7%	
complete satellite	Realistic package?	16%	Slight impact of a 3D complex geometry

Conclusions

Equivalence of RT calculation methods for the studied LEO environment

Case	TNID depth curve	RT calculation method	
1	Sphere + isotropic incidence	Slant path -	
2	Slab + normal incidence	Slant path -	
3	Slab + isotropic incidence	Normal path -	

No effect of the detector location

Conclusions & Perspectives

- Material importance
 - Small impact of the package material on TNID (17%)
- Study performed on a single LEO orbit
 - No general recommendation possible at this point
 - Need to sample all the possible environments (GEO, MEO, GTO, EOR...) in future studies
- Comparison with flight data will allow to complete the study

Thank you for your attention