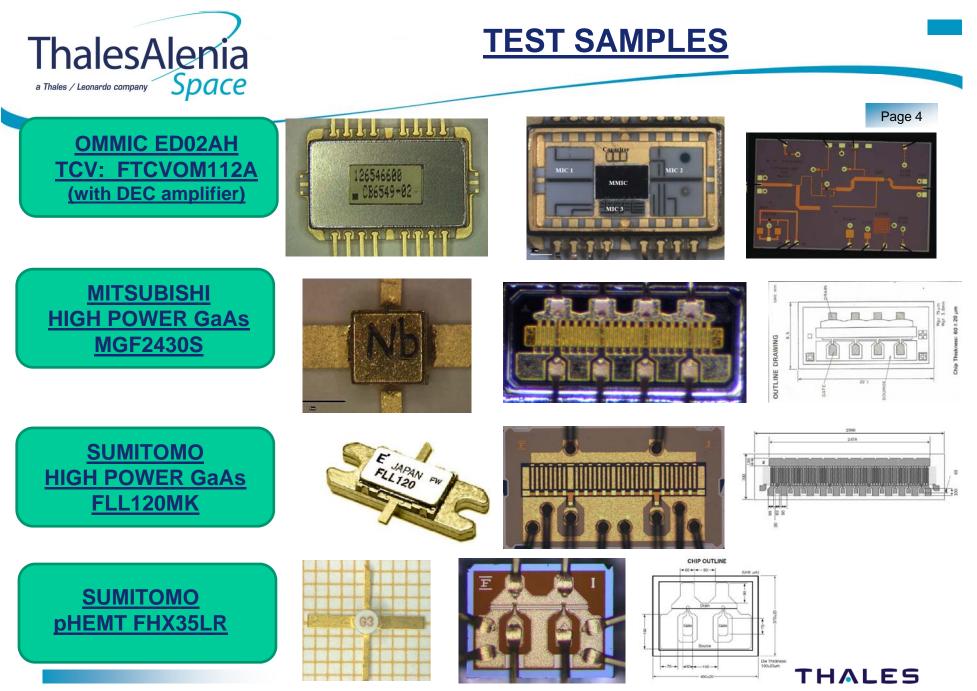
Re-issue Radiation Characterisation of GaAs power devices in support of European Radiation Hardness

ESA-CNES FINAL PRESENTATIONS. ESTEC Noordwijk. 6-9 March 2017

TASE : <u>Jeffrey Chuan.</u> Juan Cueto, Luis de Pablo TASE: Jean-Luc Muraro; Antoine Guillope; Ronan Marec TRAD: Gaël VIGNON; Alexandre Rousset ESA: Cesar Boatella

Page 2

- Radiation sensitivity of GaAs components <u>is not</u> so well known as compared to other technologies (Si, SiGe).
- Traditional radiation harness policy consisted in a good derating in DC bias conditions to ensure operation inside a known or expected DC safe operating area (SOA).
- However destructive single event effects (SEE) have been seen on some MESFET devices under nominal DC bias and RF signal and conditions which were compliant with standard derating requirements. Results indicate that radiation susceptibility depends on DC biasing conditions but increases with the level of RF applied to the device
- However analysis of the different manufacturer data sheets and design rule manuals shows that only DC absolute maximum rating are provided. Also all derating rules are given on DC ratings only (ECSS-Q-ST-30-11; JPL D-8545; MIL-HDBK-1547A etc.)
- Are radiation tests under DC sufficient ? and if RF, what RF signals?,
- Do we need to test other technologies than power MESFET like HEMT, pHEMT?,
- Do we need to test per device, per lot, per function, per technology process ?
- What Test vehicle (TCV, DEC, MMIC) ?
- Have we to modify derating rules?.



SELECTION OF EUROPEAN

Page 3

Under an ESA contract, TAS selected several European technologies (OMMIC D01PH pHEMT; OMMIC ED02AH pHEMT; UMS PPH25X pHEMT; UMS HP07 MESFET) and non-European ones (MITSUBISHI High Power MESFET; Sumitomo "7" Series MESFET, Sumitomo Low Noise pHEMT) to test under DC and DC+RF signals trying to achieve worst case conditions.

Process (FOUNDRY)	ED02AH (OMMIC)	High Power GaAs MGFC (MITSUBISHI)	High Power GaAs "7" Series FL707 (SUMITOMO)	рНЕМТ (SUMITOMO)	HP07 (UMS)	D01PH (OMMIC)	PPH25X (UMS)
Active device	pHEMT	MESFET	MESFET	pHEMT	MESFET	pHEMT	pHEMT
Туре	Low Noise	Power	Power	Low Noise	Power	Power	Power
Power density		300 mW/mm	280 mW/mm	280 mW/mm	500 mW/mm	600 mW/mm	900 mW/mm
Gate length Emitter width	0.18-0.15 μm	0.6 µm	0.6 µm	0.25 µm	0.7 µm	0.13 µm	0.25 µm
I _{DS} (gm max) or I _c HBT		40 mA/mm	170 mA/mm	140 mA/mm	300 mA/mm	400 mA/mm	170 mA/mm
ldss		160 mA/mm	170 mA/mm	140 mA/mm		360 mA/mm	450 mA/mm
BV _{DS} / BV _{CE}	5 V	12,5 V	25 V	4 V	> 14 V	> 9V	> 18V
Cut off freq.	63-73 GHz		15 GHz	31 GHz	15 GHz	100 GHz	45 GHz
V pinch	+0.2 / -0.9 V	-3 V	-2,3 V	-1,0 V	-4 V	-0.9 V	-0.9 V
Gm max / β		42 mS/mm	70 mS/mm	210 mS/mm	100 mS/mm	700 mS/mm	400 mS/mm
Noise / Gain	<0.5 dB	9dB	10 dB	1.2 dB	9.5dB	15 dB	
Noise / Gain	@12 GHz	@ 3,7-4,2 GHz	@ 3,7-4,2 GHz	@12 GHz	@6GHz	@30GHz	

ESTEC'March'2017

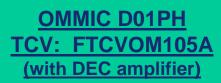
All rights reserved, 2017, Thales Alenia Space

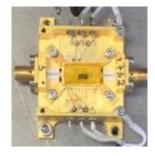
TEST SAMPLES (Cont'd)

707857

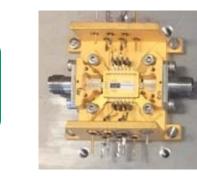
TITETT

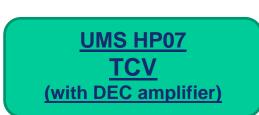
111

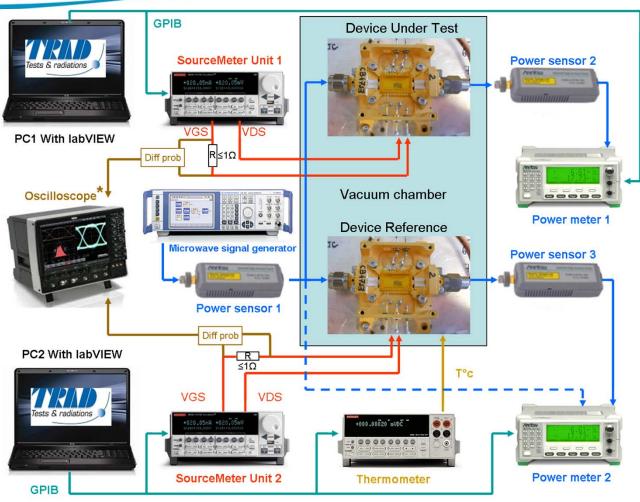

IIII

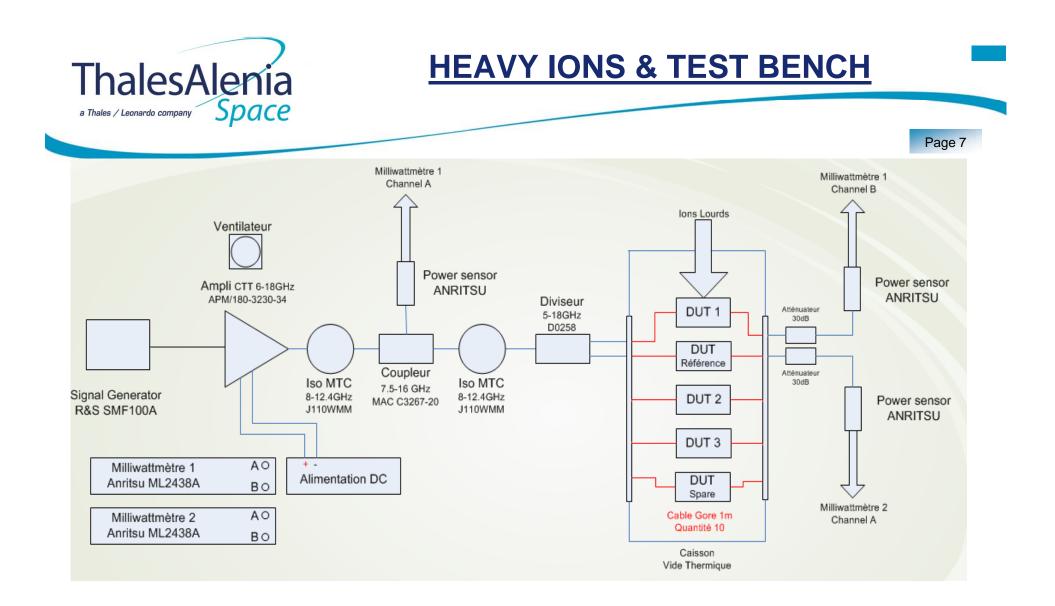

CIII

Page 5


UMS PPH25X TCV: FTCVUM102A (with DEC amplifier)

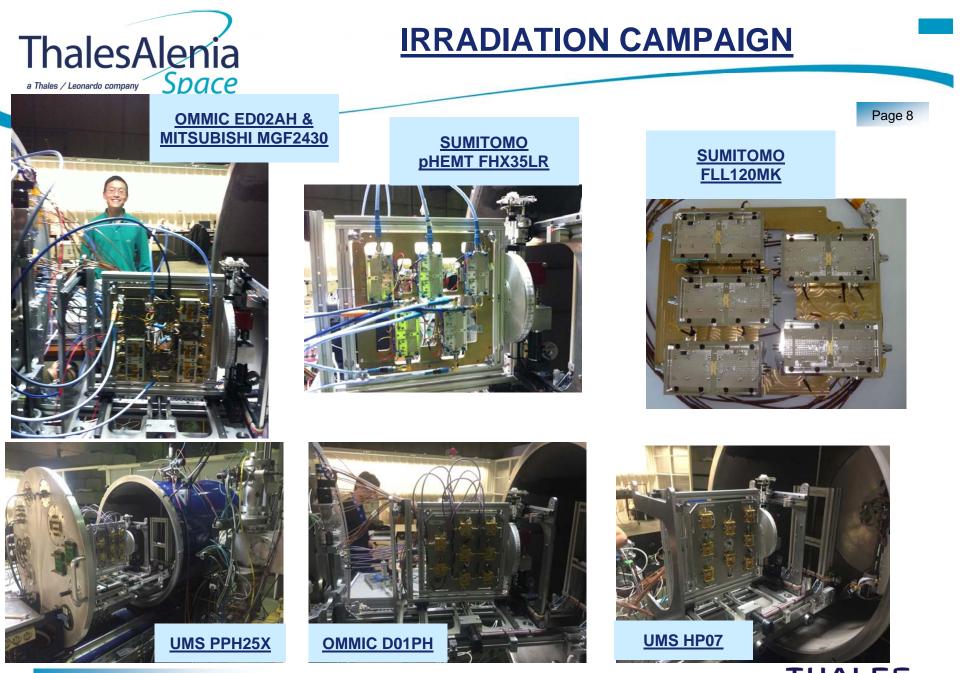






HEAVY IONS & TEST BENCH

Page 6

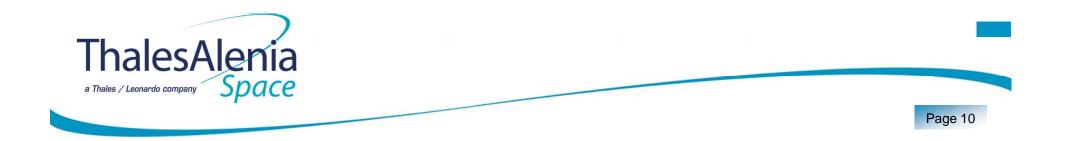


Test bench overview

Test bench used in UCL (Belgium)

THALES All rights reserved, 2017, Thales Alenia Space

All rights reserved, 2017, Thales Alenia Space



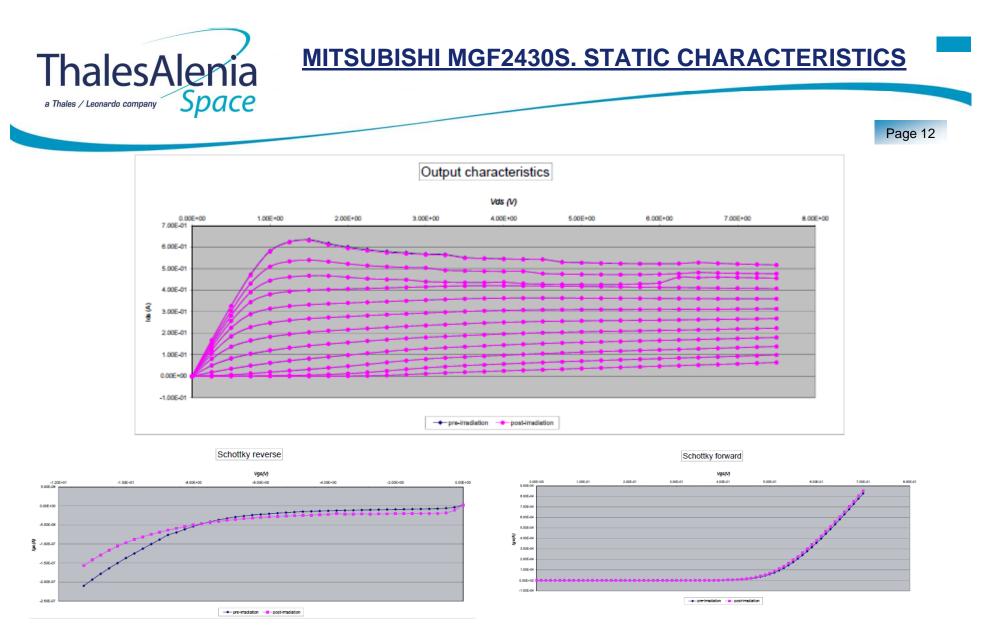
IRRADIATION CAMPAIGN

Page 9

- Performed at the Heavy Ions Cyclotron Facility (HIF) at University of Louvain la Neuve in Belgium, on week 1547 (November 17th to 20th).
- Ion 124Xenon+35, 995MeV, the Highest LET value available in coctail-2: 62.5 MeV/cm²/mg in Si (effective LET in GaAs of 44.3 MeV/cm²/mg).
- Penetration range up to 73.1µm in Si; 49µm in GaAs. Enough for a "sensitive" thickness estimated to be <20µm (including passivation around 1000A SiN, contact metal around 5000A AI, and GaAs uniform doped channel of typical <2000um)</p>
- > Fluence starting from 10^6 to 10^7 ions/cm² (under orthogonal impact (no tilt).
- > 7 to 12 runs per device. 7 to 10 minutes irradiation per run
- Sample size. On the same board: 3 DUT for irradiation + 1 REF biased inside the chamber + 1 attrition biased inside the chamber. Also 1 attrition outside the board (chamber).
- Electrical Measurements before and after irradiation:
 - OUTPUT CHARACTERISTIC : Ids vs (Vds, Vgs)
 - SCHOTTKY CHARACTERISTIC : Igs vs Vgs
- Continuous Monitoring during irradiation:
 - Pin (dBm) & Pout (dBm)
 - Id (A); Ig (A)
 - Temperature

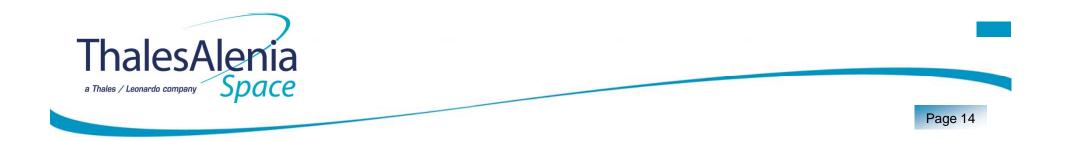
IHALES

MITSUBISHI MGF2430S


Biasing

- Condition 1.1 (DC): Vgs=-4.5V, Vds 7.5V.
- Condition 1.2 (DC): Vgs=-2.25V, Vds 7.5V.
- Condition 2 (DC+RF): Vgs= -1.03V, Id=300mA, Vds=7.5V, CW Input power=25dBm, input frequency=1.85GHz. Compression Level = 6dB

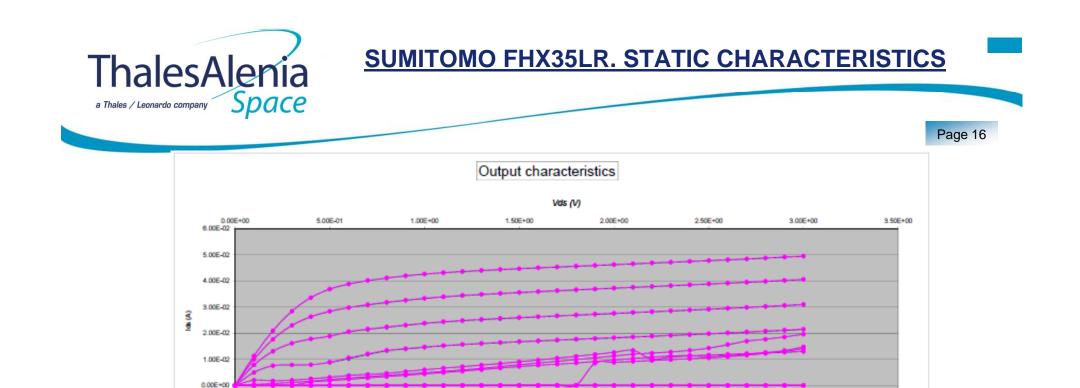
Measurements

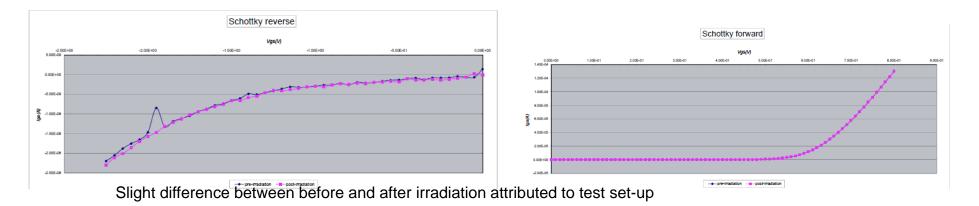

- Ids vs Vgs & Vds
- Igs vs Vgs
- Monitoring during irradiation: Pin & Pout; Id; Ig; Temperature

Sample	BVGD Sequence	RF Step Stress Sequence	Compliance
SN1	Reference	Reference	PASS
SN2	Step 1.1 & 1.2	Step 2	PASS
SN3	Step 1.1	Step 2	PASS
SN4	Step 1.1	Step 2	PASS

Slight difference between before and after irradiation attributed to temperature (increased during irradiation due to bad dissipation in vacuum) or test set-up

SUMITOMO FHX35LR

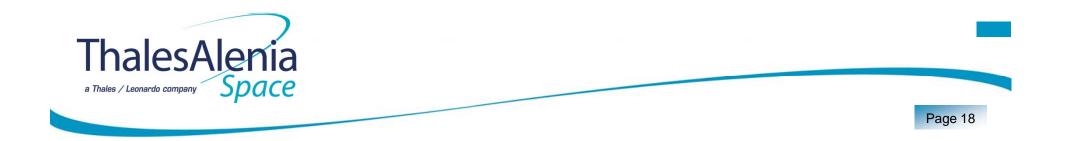

Biasing


- Condition 1.1 (DC): Vgs=-2V, Vds 3V.
- Condition 1.2 (DC): Vgs=-1V, Vds 3V.
- Condition 2 (DC+RF): Vgs=-0.3, Id=22mA, Vds=3V, CW Input power=1dBm, input frequency=1.85GHz. Compression Level = 6dB

Measurements

- Ids vs Vgs & Vds
- Igs vs Vgs
- Monitoring during irradiation: Pin & Pout; Id; Ig; Temperature

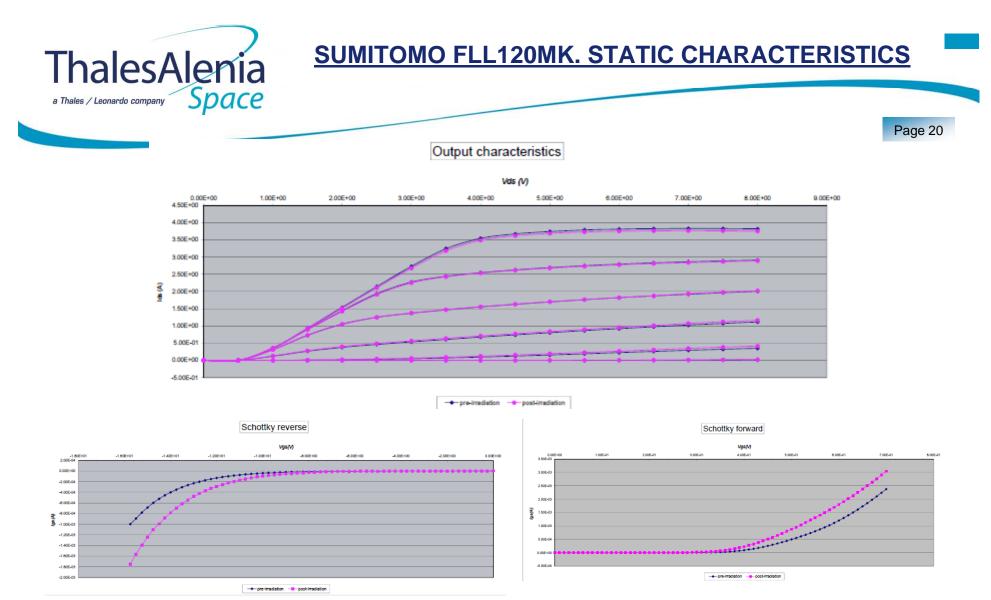
Sample	BVGD Sequence	RF Step Stress Sequence	Compliance
SN1	Reference	Reference	PASS
SN2	Step 1.1 & 1.2	Step 2	PASS
SN3	Step 1.1	Step 2	PASS
SN4	Step 1.1	Step 2 Step 2 with Oscilloscope	PASS



ESTEC'March'2017

-1.00E-02

SUMITOMO FLL120MK

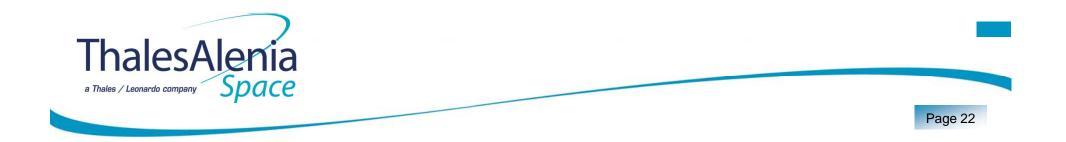

Biasing

- Condition 1.1 (DC): Vgs=-3.5V, Vds 11.25V
- Condition 1.2 (DC): Vgs=-1.75V, Vds 11.25V
- Condition 2 (DC+RF): Vgs=-1.25V, Ids=2.2A, Vds=9V, CW Input power=11.7dBm, input frequency=2.3GHz

Measurements

- Ids vs Vgs & Vds
- > Igs vs Vgs
- Monitoring during irradiation: Pin & Pout; Id; Ig; Temperature

Sample	BVGD Sequence	RF Step Stress Sequence	Compliance
SN1	Reference	Reference	PASS
SN2	Step 1.1 & 1.2	Step 2	PASS
SN3	Step 1.1	Step 2	PASS
SN4	Step 1.1	Step 2 Step 2 with Scope	PASS

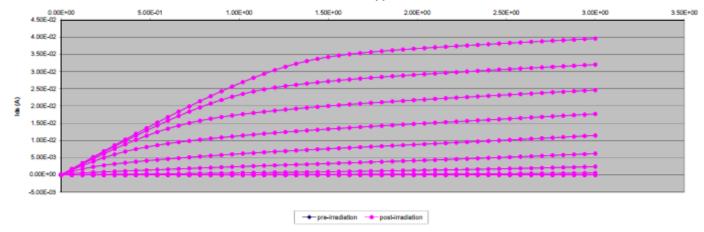


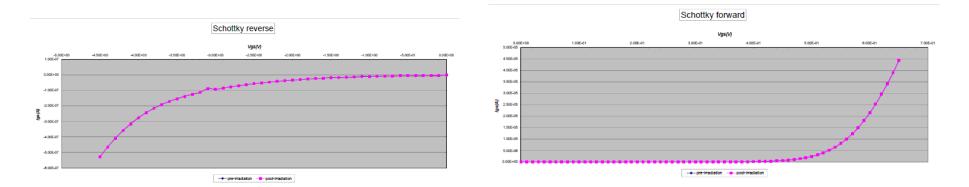
Slight difference between before and after irradiation attributed to temperature (increased during irradiation due to bad dissipation in vacuum) or test set-up

SUMITOMO HP FLL120MK

OMMIC ED02AH TCV

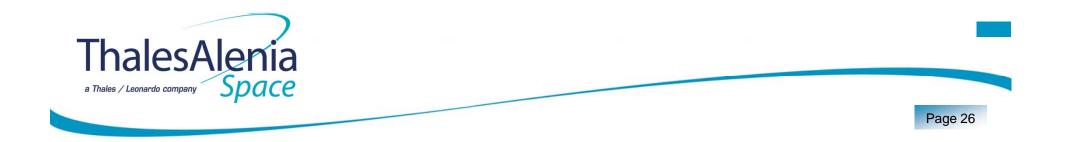
Biasing


- Condition 1.1 (DC): Vgs=-3.75V, Vds 3V
- Condition 1.2 (DC): Vgs=-1.875V, Vds 3V
- Condition 2 (DC+RF): Vgs=-0.22V, Ids=22mA, Vds=3V, CW Input power=2.8dBm, input frequency=12.6GHz
- Condition 2.1: as 2 with multicarrier and CW input power = -4dBm. Multicarrier: PM modulation with subcarrier 6KHz and 1.5Rad index

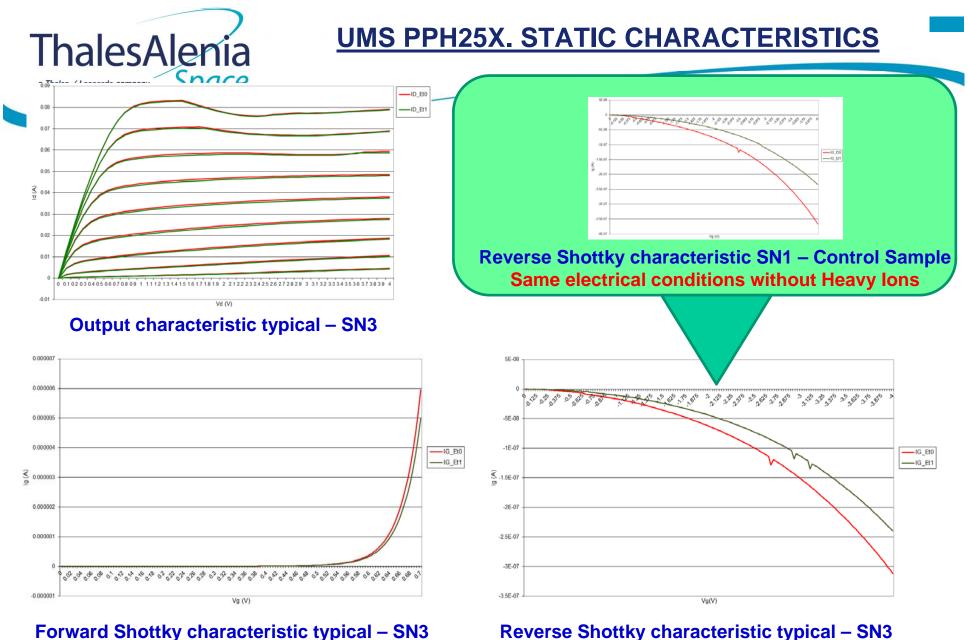

Measurements

- Ids vs Vgs & Vds
- Igs vs Vgs

Sample	BVGD Sequence	RF Step Stress Sequence	Compliance
SN1	Reference	Reference	PASS
SN2	TCV Step 1.1 & 1.2	DEC Step 2 & 2.1	PASS
SN3	TCV Step 1.1	DEC Step 2 & 2.1	PASS
SN4	TCV Step 1.1	DEC Step 2 & 2.1	PASS



THALES All rights reserved, 2017, Thales Alenia Space

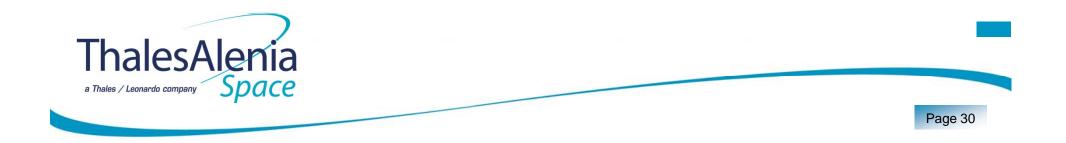


UMS PPH25X. TEST PLAN & RESULTS

Page 27

ELECTRICAL TEST CONDITIONS 1	BVGD Sequences: On TCV devices <u>Step 1-1 :</u> TCV VDS nominal, VGD (DC) = VGD (RF) peak = -17 V (Based by retro simulation for 6dB GC) <u>Vds=14V, Vgs=-3V</u>
ELECTRICAL TEST CONDITIONS 2	RF Step Stress Sequences: on DEC devices For DEC VDS=7 Volts, Ids= 27 mA Step 2-1 : 4 dB gain comp. Pin=18,2 dBm Step 2-2 : 6 dB gain comp. Pin=20,4 dBm

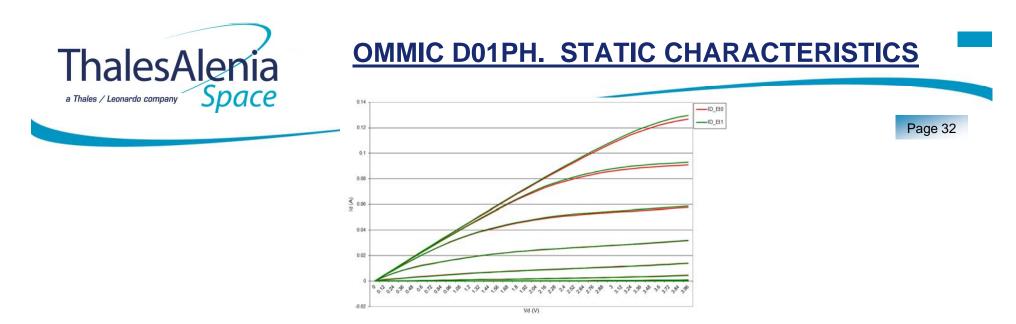
Sample	BVGD Sequence	RF Step Stress Sequence	Compliance
SN1	Reference	Reference	PASS
SN3	Step 1.1	Step 2.2	PASS
SN4	Step 1.1	Step 2.2	PASS
SN5	Step 1.1	Step 2.2	PASS

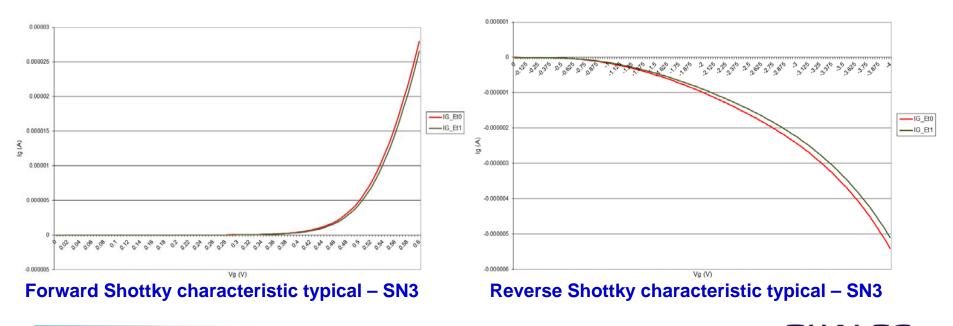


Reverse Shottky characteristic typical – SN3

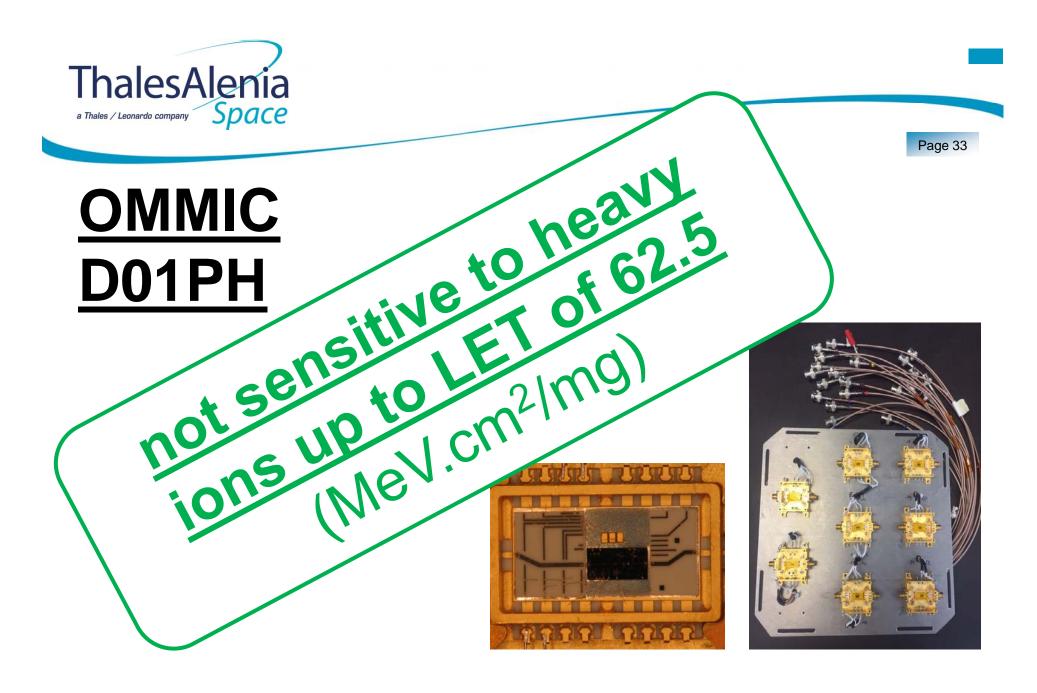
THALES All rights reserved, 2017, Thales Alenia Space

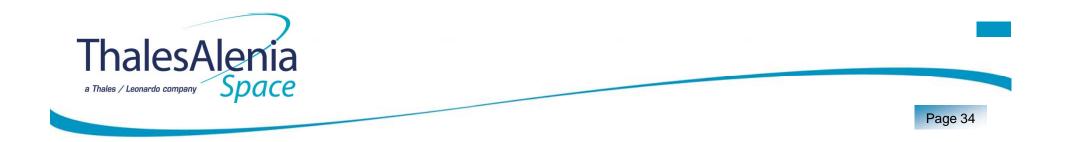
ESTEC'March'2017




OMMIC D01PH. TEST PLAN & RESULTS

ELECTRICAL TEST	BVGD Sequences: On TCV devices	Page 31
CONDITIONS 1	Step 1-1 : TCV VDS nominal, VGD (DC) = VGD (RF) peak = -	
	6.5 V (Based by retro simulation for 6dB GC)	
	<u>Vds=4V, Vgs=-2.5V</u>	
	RF Step Stress Sequences: on DEC devices	
ELECTRICAL TEST	For DEC Vds=4 V, Ids=58 mA	
CONDITIONS 2	Step 2-1 : 4 dB gain comp. Pin=15dBm	
	Step 2-2 : 6 dB gain comp. Pin=17,25dBm	


Sample	BVGD Sequence	RF Step Stress Sequence	Compliance
SN1	Reference	Reference	PASS
SN3	Step 1.1	Step 2.2	PASS
SN4	Step 1.1	Step 2.2	PASS
SN5	Step 1.1	Step 2.2	PASS



Output characteristic typical – SN3

THALES All rights reserved, 2017, Thales Alenia Space

UMS HP07. TEST PLAN

Space			
	BVGD Sequences: On TCV devices	Page 35	
ELECTRICAL TEST CONDITIONS 1	<u>Step 1-1 :</u> 100% ROR : <u>Vds=9V, Vgs=-9V</u> <u>Step 1-2 :</u> 75% AMR : <u>Vds=7.5V, Vgs=-7.5V</u> <u>Step 1-3 :</u> 100% AMR : <u>Vds=10V, Vgs=-10V</u>		
ELECTRICAL TEST CONDITIONS 2	RF Step Stress Sequences: on DEC devices For DEC VDS=7 Volts, Ids= 270 mA Step 2-1 : 4 dB gain comp. Pin=10 dBm Step 2-2 : 6 dB gain comp. Pin=13 dBm		

A sensitivity have been observed on HP07 process during californium test (LET 40) in TRAD building.

(Note that sensitivity already seen in late 90's during heavy ions testing performed by TASF/CNES at Vgd<vgdmax)

→ We have decided to begin the heavy ions campaign with a different LET in order to define a threshold :

→ LET 32 : KRYPTON

UMS HP07. RESULTS. ARGON (LET 10)

a Thales / Leonardo company	e	
	BVGD Sequences: On TCV devices	Page 36
ELECTRICAL TEST		
CONDITIONS 1	<u>Step 1-2 :</u> 75% AMR : <u>Vds=7.5V, Vgs=-7.5V</u>	
	<u>Step 1-3 :</u> 100% AMR : <u>Vds=10V, Vgs=-10V</u>	
	RF Step Stress Sequences: on DEC devices	
	For DEC VDS=7 Volts, Ids= 270 mA	
ELECTRICAL TEST		
CONDITIONS 2	<u>Step 2-1 :</u> 4 dB gain comp. <u>Pin=10 dBm</u>	
	Step 2-2 : 6 dB gain comp. Pin=13 dBm	

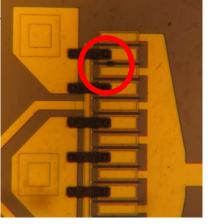
Sample	BVGD Sequence	RF Step Stress Sequence	Compliance
SN1	Reference	Reference	PASS
SN2	Step 1.1 Step 1.2 Step 1.3	Step 2.1 Step 2.2	PASS
SN4	Step 1.3	Step 2.2	PASS
SN5	Step 1.3	Step 2.2	PASS

UMS HP07. RESULTS. NICKEL (LET20)

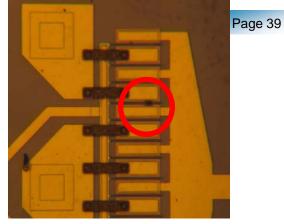
ELECTRICAL BVGD Sequences: On TCV devices TEST Step 1-1 : 100% ROR : Vds=9V, Vgs=-9V **CONDITIONS 1** Step 1-2 : 75% AMR : Vds=7.5V, Vgs=-7.5V Step 1-3 : 100% AMR : Vds=10V, Vgs=-10V <u>sensitive to</u> <u>heavy ions LET</u> 20 in RF SS **RF Step Stress Sequences: on DEC** devices **ELECTRICAL** For DEC VDS=7 Volts, Ids= 270 mA TEST Step 2-1 : 4 dB gain comp. Pin=10 dBm **CONDITIONS 2** Step 2-2 : 6 dB gain comp. Pin=13 dBm

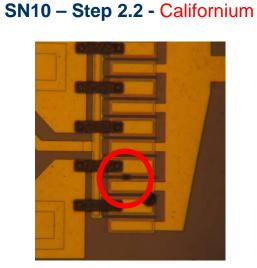
Sample	BVGD Sequence	RF Step Stress Sequence	Compliance
SN1	Reference	Reference	PASS
SN5	Step 1.3	Step 2.2	PASS
SN4	Step 1.3	Step 2.2	FAIL
SN2	Step 1.3	Step 2.1	FAIL

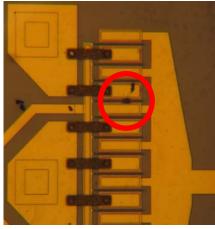
Page 37

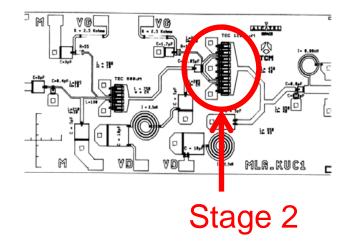

UMS HP07. RESULTS. KRYPTON (LET32)

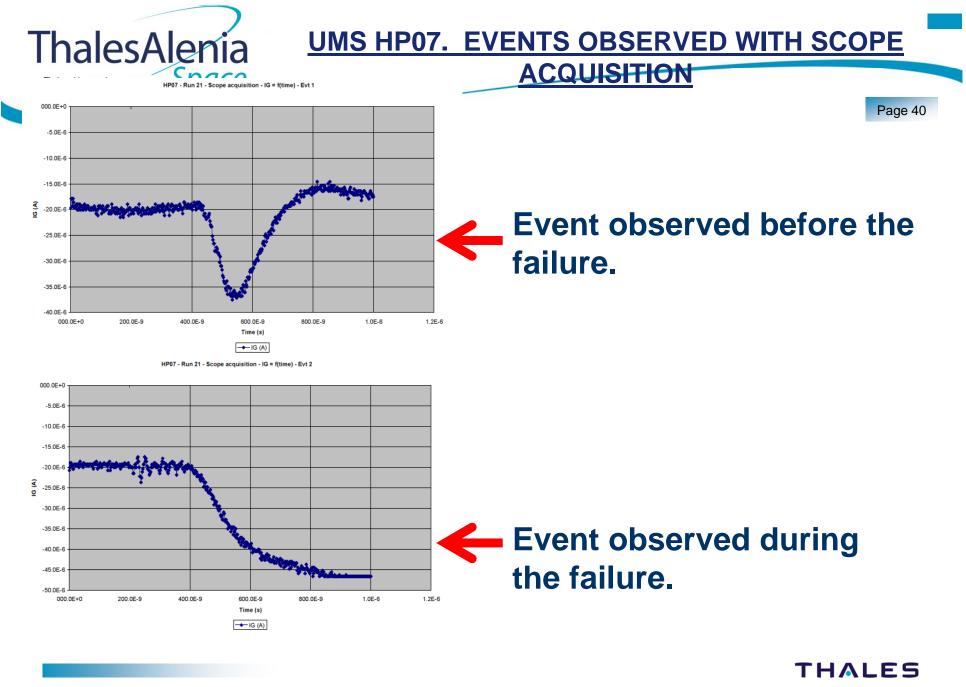
,		Dogo 20
ELECTRICAL	BVGD Sequences: On TCV devices	Page 38
TEST CONDITIONS 1	<u>Step 1-1 :</u> 100% ROR : <u>Vds=9V, Vgs=-9V</u> <u>Step 1-2 :</u> 75% AMR : <u>Vds=7.5V, Vgs=-7.5V</u> <u>Step 1-3 :</u> 100% AMR : <u>Vds=10V, Vgs=-10V</u>	sensitive to
	RF Step Stress Sequences: on DEC devi	sensitive LET
ELECTRICAL TEST CONDITIONS 2	For DEC VDS=7 Volts, lds= 27 mA <u>Step 2-1 :</u> 4 dB gain comp. <u>Pin=10 dBm</u> <u>Step 2-2 :</u> 6 dB gain comp. <u>Pin=13 dBm</u>	sensitive consistence of the sensitive consistence of the sensitive consistence of the sensitive construction of the sensitive


Sample	BVGD Sequence	RF Step Stress Sequence	Compliance
SN1	Reference	Reference	PASS
SN6	Step 1.3		PASS
SN7	Step 1.3		FAIL
SN8	Step 1.2		FAIL
SN5		Step 2.1 with scop	FAIL


UMS HP07. SENSITIVE TO HEAVY IONS


SN6 – Step 2.2 - Californium


SN3 – Step 2.2 - Californium

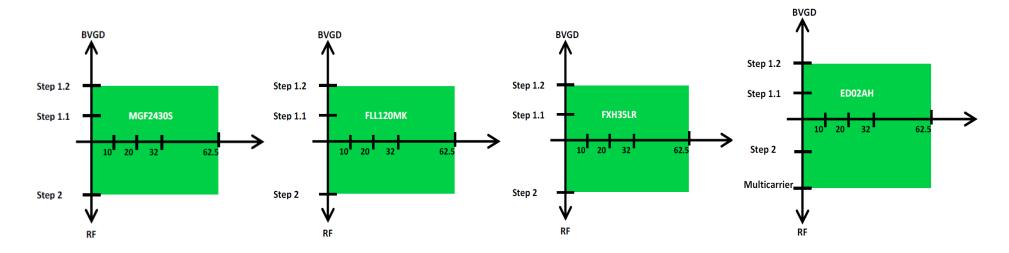


SN2 - Step 2.1 (LET20)

SN4 - Step 2.2 (LET20)

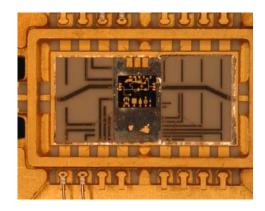
ESTEC'March'2017

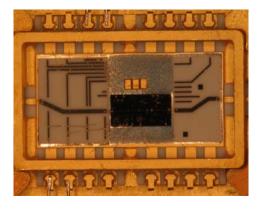
All rights reserved, 2017, Thales Alenia Space

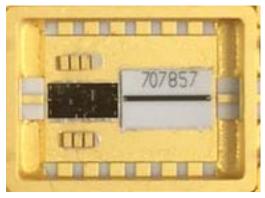


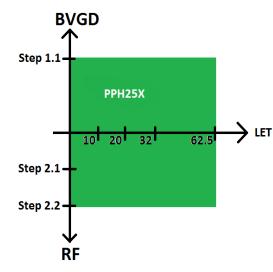
SAFETY OPERATING AREA (1)

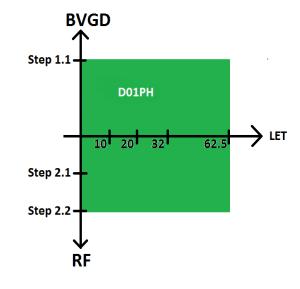
Page 42

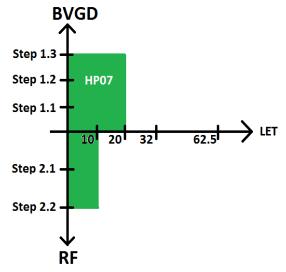

THALES All rights reserved, 2017, Thales Alenia Space


SAFETY OPERATING AREA (2)


UMS PPH25X




OMMIC D01PH



UMS HP07

All rights reserved, 2017, Thales Alenia Space

ESTEC'March'2017

CONCLUSION. RESULTS (2)

UMS HP07

UMS PPH25X

Sensitive to heavy ions: Sensitive to heavy ions: Naximum LET 10 BVGD: Maximum LET 10 BVGD: Maximum LET 10 BVGD: Maximum LET 10 Not sensitive to heavy ions up to LET of 62.5 Not sensitive to heavy ions up to LET of 62.5

OMMIC D01PH

CONCLUSION. METHODOLOGY, DERATING, LEASONS LEARNED

Page 46

□ Are radiation tests under DC sufficient ? and if RF, what RF signals?,

- RF step stress test (increasing compression level) under heavy ions is recommended
- Do we need to test other technologies than power MESFET like HEMT, pHEMT?,
 - No sensitivity seen on pHEMT but cannot be extended to others without data
- □ Do we need to test per device, per lot, per function, per technology process ?
 - Consistency with previous data seems to show that testing per technology is satisfactory.
- □ What Test vehicle (TCV, DEC, MMIC) ?
 - ✓ TCV with DEC is OK

