

REDI

Radiation evaluation of digital isolators currently available, suitable for space missions in terms of radiation tolerance (TID and SEE) including the JUICE mission

M. Wind (SL), P. Beck (SL), M. Latocha (SL), S. Metzger (INT), M. Poizat (ESA), M. Steffens (INT)

ESA-CNES Final Presentation Days on Space Environments and Radiation Effects on EEE Components

9th March 2016, ESA-ESTEC, Noordwijk

INT

Motivation and Objectives

Motivation

- offer new options on safety isolations
- show advantages over optocouplers (integration, power efficiency, cost, performance, etc.)

Objectives

- identify DIs currently available that are of interest for space missions
- perform a detailed radiation evaluation (TID and SEE)

Contents

- 1. Project workflow
- 2. Test candidates and technologies
- 3. Tests performed (TID, SEE, DD, electrons)
- 4. Analysis and results
- 5. Summary and recommendations

Project Work Flow

Test Candidates - Technologies

Technology		Сарас	itive Coupling	Monolithic Transformer		GMR	
Manufacturer	TI Texas Instruments		Maxim Integrated	Silicon Labs	Analog Devices		NVE* IsoLoop
Investigated Part	ISO7220MDR	ISO15DW	MAX14850SE+	Si8261ACC-C-IP	ADUM1201ARZ	ADUM1100URZ	IL715-3E
Lot Code	4286983TW4 4662957TN4	4043232TN4	0001755035	1333CF600U	1TAK96092.9	AJ60138.5	132361, 135210
Date Code	-/1419	-	1406	-	-	1351	-
Purchased Quantity	100	100	100	100	100	100	100

Thin SiO₂ Insulation

Performed Radiation Testing

Test	Test Facility	Source
TID testing with gamma	Accredit Standard Radiation Laboratory Seibersdorf Laboratories (SL), Austria	Cobalt-60
TID testing with gamma	TK1000A, Fraunhofer INT Euskirchen, Germany	Cobalt-60
TID testing with electrons	MEDISCAN, E-Beam Technology Kremsmünster, Austria	10 MeV electrons
Displacement damage testing with neutrons	D711 n-generator, Fraunhofer INT Euskirchen, Germany	14 MeV neutrons
SEE testing with protons	Proton Irradiation Facility (PIF), Paul Scherrer Institute (PSI), Villigen, Switzerland	24 to 200 MeV protons
SEE testing with heavy ions	Radiation Effects Facility (RADEF) University of Jyväskylä, Finland	Heavy ions: N, Si, Fe, Kr, Xe LET: 1.87 to 60.0 MeV cm²/mg

Radiation Testing Facilities

DI Dr. Michael WIND Seibersdorf Laboratories - RHA | Space Weather ESA/ESTEC Final Presentation Days, 9 March, 2017

INT

Co-60 TID Testing

Exposure Circuitry (Biased & Unbiased):

Irradiation Sequence

- Dose Level: 300 krad_(Si)
- Dose Rate: 3.2 5 rad_(Si)/s
- Dose Steps: 10, 20, 30, 50, 100, 300 krad_(Si)
- Annealing: 24 h at RT, 168h at 100°C

Parameters Tested

Index	Characteristics	Symbol
1	Input Supply Current at logical low	IDD1(L)
2	Output Supply Current at logical low	IDD2(L)
3	Input Supply Current at logical high	IDD1(H)
4	Output Supply Current at logical high	IDD2(H)
5	Output voltage at logical low	Vol
6	Output voltage at logical high	Vон
7	Rise time	tr
8	Fall time	tf
9	Propagation delay Low? High	t _{pLH}
10	Propagation delay High? Low	t _{рнL}
11	Pulse Width Distortion	PWD
12	Leakage Current	I _{I-O}

Co-60 TID Test Set-Ups

TID Results – Overview

Technology			Capacitive	Coupling	Monolithic Transformer		GMR	
Manufacturer		TI Texas Instruments		Maxim Integrated	Silicon Labs	Analog Devices		NVE* (IsoLoop)
Investigated Part		ISO7220MDR	ISO15DW	MAX14850SE+	Si8261ACC-C- IP	ADUM1201ARZ	ADUM1100URZ	IL715-3E
TID	Parametric failure level	> 300 krad(Si)	10 krad(Si)	50 krad(Si)	30 krad(Si)	20 krad(Si)	20 krad(Si)	30 krad(Si)
	Functional failure level	> 300 krad(Si)	> 300 krad(Si)	100 krad(Si)	168 h @100°C	100 krad(Si)	N/A	> 300 krad(Si)
	Dielectric withstand	100 krad(Si)	100 krad(Si)	> 300 krad(Si)	> 300 krad(Si)	>300 krad(Si)	> 300 krad(Si)	FAIL at 0 krad(Si)
	Recovery @	No	No	No	No	168 h @100°C	N/A ⁶	partially yes

TID Electron Testing

- Tested Part: ISO7220MDR
- Radiation facility: MEDISCAN, E-Beam, Kremsmünster, Austria
- Irradiation Sequence
 - Total Dose Level: 285 krad_(Si)
 - Dose Rate: 5 krad(Si)·s⁻¹
 - Dose Steps: 23, 47, 95, 285 krad_(Si)
- Biased and unbiased exposure (identical to Co-60)
- Characterized are electrical parameters, timing and switching related parameters
- Parametric failure level: 47 krad_(Si)
- Functional failure level: 95 krad_(Si)
- Recovery after 24 h RT anneal

Tecł	Capacitive Coupling	
Manı	TI Texas Instruments	
Investi	ISO7220MDR	
Electrons	Parametric Failure	47 krad _(Si)
	Functional Failure	95 krad _(Si)
	Recovery @	24h @ RT

DD Neutron Testing

- Tested Part: **ISO7220MDR**
- Radiation facility: D711 n-generator, Fraunhofer INT
- Irradiation Sequence
 - Total Fluence Level: 9.10¹¹ n(1MeV) cm⁻²
 - Flux: 1.35·10⁷ 3.70 ·10⁷ n(14MeV) cm⁻² ·s⁻¹
 - Fluence Steps:
 1.8 ·10¹⁰, 9·10¹⁰, 1.8·10¹¹, 9·10¹¹ n(1MeV) cm⁻²
- Biased an unbiased exposure (identical to Co-60)
- Characterized are electrical parameters, timing and switching related parameters
- No parametric nor functional failures observed!

SEE Testing

Investigated SEE effects

- Single Event Latch-Up (SEL)
 - Monitoring of the supply currents of both DI sides
 - Standard procedure to catch SELs
- Single Event Transients (SET)
 - Detect deviations from the expected DI output
- Single Event Dielectric Rupture (**SEDIR**)
 - DC high voltage of 560 V
 - $I_{\text{leak,max}} = 5\mu A$

Schematic: SEL / SET

FluxPIF / PSIRADEF07 cm -2 · s -1Image: set of the set of th

Applied Radiation Environments

Radiation Environment	Test Facility	LET Range	Fluence	Flux
Proton	PIF/PSI	< 15 MeV·cm²/mg	10 ¹⁰ cm ⁻²	10 ⁷ cm ⁻² ·s ⁻¹
Heavy Ion	RADEF	1.8 – 60 MeV∙cm²/mg	10 ⁷ cm ⁻²	~5 · 10 ⁴ cm ⁻² ·s ⁻¹

DI Dr. Michael WIND Seibersdorf Laboratories – RHA | Space Weather ESA/ESTEC Final Presentation Days, 9 March, 2017

Features of SET Testing (SL)

SET detection requirements

- Measure the DI output with a time resolution < 1 ns.
- Detect every transient with duration > 1ns.
 Don't miss any!
- Store SET signal trace (V_{out} vs. time) min. **100 traces**.
- Perform trace analysis for determination of worst case transient

Real Time NI-PXI system based FPGA solution

- Based on comparison: DI-out vs. reference
- NI-PXI Hardware, LabVIEW (SL):
- 2 Input-Channels: comparison of signals
- Time resolution of 0.66 ns
- LabVIEW programmed FPGA
- Allows for real-time analysis of the data (transient duration, transient amplitude, signal integration)
- Every transient is counted, no dead time, no time limit
- At least 400 transient traces for 1 ms / trace stored without interruption

Adaptermodul for FlexRIO NI 5771 Digitizer-Adaptermodul

Features of SET Testing (INT)

SET detection requirements

- Measure the DI output with a time resolution < 1 ns.</p>
- Detect every transient with duration > 1ns.
 Don't miss any!
- Store SET signal trace (V_{out} vs. time) min. **100 traces**.
- Perform trace analysis for determination of worst case transient

Company Internal Development

- Based on comparison: DI-out vs. reference
- Development by INT:
- 2 input channels: Comparison of signals
- Real time analysis of DI output, triggers fast scope for transients. Accounts and prevents signal imperfections over long cables
- No dead time like e.g. for oscilloscopes
- Every transient is counted, no dead time, no time limit
- Up to 1000 transients traces for 1 μs / trace can be recorded

Delidding – Problems Observed

Si8261: Successful Delidding (capacitive coupling)

ADuM1201: Unsuccessful Delidding (mon. transformer)

DI Dr. Michael WIND Seibersdorf Laboratories – RHA | Space Weather ESA/ESTEC Final Presentation Days, 9 March, 2017

Proton Testing

- Parts: ADUM1201ARZ, ADUM1100URZ
- LET_{max} : ~ 15 MeV·cm²/mg
- Energy: E_p=24, 51, 101, 200 MeV
- Temerature: RT, 75°C
- SEE testing: SEL, SET
- Dielectric testing: **SEDIR**
- No SEL, no SET observed
- No dielectric breakdown observed

Heavy Ion Testing

- Tested Parts: ISO7220MDR, ISO15DW, MAX14850ASE+, Si8261ACC-C-IP
- LET_{surf, range}: 1.8 60 MeV·cm²/mg
- lons: ¹⁵N⁺⁴ (1.83), ⁴⁰Ar⁺¹²(10.1), ⁵⁶Fe⁺¹⁵(18.5), ⁸²Kr⁺²²(32.2), ¹³¹Xe⁺³⁵(60)
- Temperature: RT, 75°C
- SEE testing: SEL, SET
- Dielectric testing: **SEDIR**
- No SEL occurred for: ISO7220MDR, MAX14850ASE+
- SET occurred for all part types tested.

SEE Results - Overview

Technology			Capacitive	Coupling		Monolithic Trans			
Manufacturer		TI Texas Instruments		Maxim Integrated	Silicon Labs	Analog	Devices		
Investigated Part		ISO7220MDR	ISO15DW	MAX14850SE+	Si8261ACC-C-IP	ADUM1201ARZ	ADUM11URZ		
	Delidding								
SEE	SEL	None	Yes $\sigma(Xe) = 10^{-6} \text{ cm}^2$	None	Yes σ(Xe)=2·10-⁴cm²	None @protons	None @protons		
	SET	Yes σ(Fe) = 10 ⁻³ cm ²	Yes $\sigma(Fe) = 10^{-3} \text{ cm}^2$	Yes σ(Xe)=4·10 ⁻⁵ cm ²	Yes	None @protons	None @protons		
	Dielectric withstand	N/A	N/A	Pass	Pass	Pass @protons	Pass @protons		

Technology			Capacitive	Coupling		Monolithic 1	Giant Magneto Resistant	
Manufacturer		TI Texas Instruments		Maxim Integrated	Silicon Labs	Analog	Devices	NVE ¹ (IsoLoop)
Investigat	ed Part	ISO7220MDR	ISO15DW	MAX14850ASE+	Si8261ACC-C-IP	ADUM1201ARZ	ADUM1100URZ	IL715-3E
Lot Code		4286983TW4 ² 4662957TN4 ³	4043232TN4	0001755035	1333CF600U	1TAK96092.9	AJ60138.5	132361, 135210
Date Code	•	-/1419		1406	-	-	1351	-
Numbers tested		50 / 15	44	52	57	51	57	45
	Parametric failure level	> 300 krad(Si)	10 krad(Si)	50 krad(Si)	30 krad(Si)	20 krad(Si)	20 krad(Si)	30 krad(Si)
TID	Functional failure level	> 300 krad(Si)	> 300 krad(Si)	100 krad(Si)	168 h @100°C	100 krad(Si)	N/A ⁴	> 300 krad(Si)
	Dielectric withstand	100 krad(Si)	100 krad(Si)	> 300 krad(Si)	> 300 krad(Si)	>300 krad(Si)	> 300 krad(Si)	FAIL at 0 krad(Si)
	Recovery @	No	No	No	No	168 h @100°C	N/A ⁴	partially yes
	Delidding							N/A
SEE	SEL	None	$\frac{\text{Yes}}{\sigma(\text{Xe})} = 10^{-6} \text{ cm}^2$	None	$\begin{array}{c} \text{YES} \\ \sigma(\text{Xe}) = 2 \cdot 10^{-4} \text{cm}^2 \end{array}$	None @protons	None @protons	N/A
	SET	Yes $\sigma(Fe) = 10^{-3} \text{ cm}^2$	Yes $\sigma(Fe) = 10^{-3} \text{ cm}^2$	Yes σ(Xe)=4·10 ⁻⁵ cm ²	Yes	None @protons	None @protons	N/A
	Dielectric withstand	N/A	N/A	Pass	Pass	Pass @protons	Pass @protons	N/A
	Parametric failure level	46.9 krad(Si)	-	-	-	-	-	-
Electrons	Functional failure level	95.2 krad(Si)	-	-	-	-	-	-
	Recovery @	24h @RT	-	-	-	-	-	-
Nouter	Parametric failure level	> 9·10 ¹¹ n(1MeV)·cm ⁻²	-	-	-	-	-	-
Neutrons	Functional failure level	> 9·10 ¹¹ n(1MeV)·cm ⁻²	-	-	-	-	-	-

DI Dr. Michael WIND Seibersdorf Laboratories – RHA | Space Weather ESA/ESTEC Final Presentation Days, 9 March, 2017

Summary

- **TID** and **SEE** testing with digital isolators were **performed successfully**.
- Digital isolators based on three technologies have been tested:
 (1) capacitive coupling, (2) monolithic transformer, and (3) giant magnetoresistance.
- The feasibility of using digital isolators in space applications is shown for ISO7220MDR and MAX14850SE+ - both capacitive coupling
- Other capacitive coupled devices show high sensitivity to SEL!
- Components based on monolithic transformers
 - experienced to have **problems in delidding**:
 - damage of the devices, coupling coils are covering a significant part of the die
 - proton tests indicate insusceptibility to SEE for LET < 15 MeV·cm²/mg.
- CMOS-based digital isolators are **not displacement damage sensitive** (as it is expected).

Recommendations

- **Further testing** of digital isolators is encouraged (DI offer excellent properties)
- Low dose rate testing is recommended (for explanation of time-dependent or rebound effects may explain some observations, e.g. functional failures after annealing at 100°C).
- Further TID testing with electrons is recommended using the same dose rate as for Co-60 testing (trade-off: limited availability and high costs).
- Testing with heavy ions at higher energies is recommended for those devices that show difficulties during delidding (trade-off: limited availability and high costs).
- Testing considering **lot-to-lot variations** is recommended.
- Testing the **part-to-part variance** within a single lot is recommended (elevated sample sizes).

Acknowledgements

The work has been carried out under ESA – Contract No. 4000112480/14/NL/SW; the support by the European Space Agency is acknowledged.

Further we acknowledge the support of the teams of the following irradiation facilities:

- Accredited Standard Radiation Laboratory, Seibersdorf Laboratories (SL), Austria
- MEDISCAN, E- Beam Technology, Kremsmünster, Austria
- TK1000A, Fraunhofer (INT), Euskirchen, Germany
- D711 n-generator, Fraunhofer (INT), Euskirchen, Germany
- Proton Irradiation Facility (PIF), Paul Scherrer Institute (PSI), Villigen, Switzerland
- Radiation Effects Facility (RADEF), University of Jyväskylä, Finland

RADHARD Symposium 2017 – 16th May 2017 Seibersdorf / Vienna, <u>radhard.eu</u>

RADHARD 2017

Venue - Date Program Registration How to reach us Accommodation TEC-Laboratory Archive Login / Logout

RADHARD-Symposium 2017

May 16th, 2017

Seibersdorf Laboratories is organising the RADHARD-Symposium 2017, which will focus on Radiation Hardness Assurance Issues related to CubeSat space missions.

RADHARD-Symposium will focus on:

- CubeSat Space Mission
- Practical Aspects of Radiation Hardness Assurance
- Innovative Testing Developments and Future Needs

ORGANISER

Seibersdorf Laboratories in close collaboration and supported by Austrian Research Promotion Agency (FFG), AUSTROSPACE, Graz University of Technology, University of Applied Sciences Wiener Neustadt (FHWN).

∨ Go

Credit BRITE-Austria/TUGSAT-1, © TU-Graz

Contact

enter search term

Conference Organisation T: +43 50550-2500 F: +43 50550-2502 radhard(at)seibersdorflaboratories.at

RADHARD Symposium 2017 – 16th May 2017 Seibersdorf / Vienna, radhard.eu

RADHARD > Program

RADHARD

V Go enter search term

6th. 2017

Credit BRITE-Austria/TUGSAT-1, @ TU-Graz

Contact

Conference Organisation T: +43 50550-2500 F: +43 50550-2502 radhard(at)seibersdorflaboratories.at

Venue - Date Program Registration How to reach us Accommodation TEC-Laboratory Archive Login / Logout

i ieiiii	innary i rogram
	Update: March 06
Tuesda	y, May 16 th , 2017
08:30	Registration
09:30	Welcome Notes by the General Manager of Seibersdorf Labor GmbH
	Welcome Notes by the Head of Austrian Aeronautics and Space Agency
	Introduction and Scope of the Symposium
10:00	Keynote
	CubeSat, COTS and Radiation Hardness Assurance
10:45	Coffee Break
11:15	Radiation Environment of CubeSat Mission
11:45	CubeSat Mission - RHA Experiences and Challenges I
12:45	Lunch Buffet
13:30	CubeSat Mission - RHA Experiences and Challenges II
14:30	Selected Topics in Components and System Testing
15:00	Coffee Break
15:30	Selected Topics in Radiation Hardness Assurance
16:00	Closing

Visit of the TEC-Laboratory

Proliminany Program