

Verification of Co-60 TID testing representativeness for EEE components flown in the Jupiter environment

Project Name: ECo-60 ESA Contract No: RFQ/3-13975/13/NL/PA Company Details: LIP

M. Pinto, P. Assis, M. Ferreira and P. Gonçalves

ESA-CNES Final Presentation Days:

Space Environments and Radiation Effects on EEE components

8 March 2017

Outline

Motivation

General Procedures

- Components
- Irradiation Campaigns
- Test Setup
- Radiation Test Plan
- Irradiation Results

Conclusions

Motivation (1)

- ESA Next Class-L mission (JUICE) is to be flown to Jupiter in 2022.
- □ Unlike in Earth GEO, the Jovian system radiation environment is dominated by high energy electrons.

Dose in Si as a function of spherical Al shielding as calculated by SHIELDOSE-2Q for the entire JUICE mission.

□ For higher energies radiative energy loss increases

Objective: Verification of Co-60 TID testing representativeness for EEE components flown in the Jupiter environment

Electron Energy (MeV)	Stopping Power (MeV/g/cm ²)		
	Collision	Radiation	Total
1	1,51	2.4 x 10 ⁻²	1,53
5	1,62	1.4 x 10 ⁻¹	1,76
10	1,70	0,31	2,01
30	1,81	1,11	2.92
50	1,86	1,94	3.80

Total Stopping Power

General Procedures – Components (1)

□ 5 Components

	Component			
Component Type	Reference	Manufacturer	# of Parameters	
Transistor (discrete MOS/CMOS)	STRH100N10	STMicroelectronics	6	
FLASH-NAND Memory (MOS/CMOS IC)	MT29F32G08ABAAA WP-ITZ	Micron	8+2	
Transistor (Bipolar)	2N2222	STMicroelectronics	4+4]
OPAMP (Analog ICs non ELDRS)	LM124	Texas Instruments	11	\mathbb{N}
Voltage Reference (Analog ICs displaying ELDRS)	LM4050WG5.0-MPR	Texas Instruments	5	

Unbiased

General Procedures – Components (2)

Power Carrier Boards

Transistor (discrete MOS/CMOS) STRH100N10

Memory Carrier Boards

FLASH-NAND Memory (MOS/CMOS IC) MT29F32G08ABAAAWP-ITZ

Generic Carrier Boards

Transistor (Bipolar) 2N2222 OPAMP Analog ICs non ELDRS LM124 Voltage Reference Analog ICs displaying ELDRSLM4050

board type irradiated per campaign
reference across campaigns (always the same)

General Procedures – Radiation Test Facilities

Facility	Irradiation type	Irradiation Code	Dose Rate (krad/h)	
ESA-ESTEC	Co60	Co1 0.2		krad/h
Campus Tecnológico e Nuclear (CTN-Lisbon)	Co60	Co2	24 kr	ad/h
Hospital Santa Maria	40 M M -			Corrected
(HSM-Lisbon)	12 MeV e	ED1	24 krad/h	21.6 krad/h
RADEF	12 MeV e^-	Eb2	24 krad/h	21.6 krad/h
RADEF	20 MeV e^-	Eb3	24 krad/h	22.8 krad/h

All doses were calculated in water with a resolution better than 10%. In the case of electrons the dose had to be converted from dose at maximum peak to dose at surface.

General Procedures – Test Setup (1)

General Procedures – Test Setup (2)

Test system developed @ LIP Based on SOC development board from ARROW/ALTERA

FPGA + microprocessor in one chip.

FPGA firmware writes, reads and tests the memory;

Microprocessor runs Linux. Controls the system and stores the data for offline processing.

Data: number, location and content of cells with errors

Radiation Test Plan (1)

3 Phases

Measuring Setup Development

Pre-Measurement of key parameters of the components

20 krad steps irradiations up to 100 krad Components measured before and

Irradiation

Pre-Irradiation

between irradiation steps
Reference measured at several points
for comparison

of irradiated components

Component	Co1	Co2	Eb1	Eb2	Eb3
Transistor (discrete MOS/CMOS)- STRH100	5	5	5	0	5
FLASH-NAND Memory (MOS/CMOS IC) - MT29	5	5	5	0	0
Transistor (Bipolar) - 2N2222	5	5	5	2	0
Analog ICs non ELDRS – LM124	5	5	5	5	5
Analog ICs displaying ELDRS – LM4050	5	5	5	5	5

Every week during the first month

Every month during the last 8 months (ends in July)

Results – Transistor (discrete MOS/CMOS) STRH100 (1)

•

Results – Transistor (discrete MOS/CMOS) STRH100 (2)

Characteristics	Test Conditions	Status
Gate-to-Source Leakage Current 1	VGS=20V, VDS=0V	No apparent degradation
Gate-to-Source Leakage Current 2	VGS=-20V, VDS=0V	No apparent degradation
Drain Current	VDS=40V, VGS=0V	Radiation degradation Similar for electrons and gammas
Gate-to-Source Threshold Voltage	VDS≥VGS ID=1mA	Radiation degradation Similar for electrons and gammas
Static Drain-to-Source On Resistance	VGS=12V, ID=24A	No apparent degradation
Source-to-Drain Diode Forward Voltage	VGS=0V, ISD=48A	No apparent degradation

Results – FLASH-NAND Memory (MOS/CMOS IC) MT29 (1)

Unresponsive after irradiation step XYZ Responsive after irradiation step

Data not read

Not Available

			Dose (krad)				
	UUID	Irradiation Code	20	40	60	80	100
	Co2-B-16						
	Co2-B-17						
	Co2-B-18	Y HDR					
	Co2-B-19						
	Co2-B-20						
			18	36	54	72	90
	Eb1-B-1						
<u>e</u>	Eb1-B-2						
Ë	Eb1-B-3	12 MeV <i>e</i> [–]					
ŝ	Eb1-B-4	HDR					
	Eb1-B-5						
			23.04	42.87	66.27	91.60	110.3
	Co1-B-6						
	Co1-B-7						
	Co1-B-8	Y LDR					
	Co1-B-9						
	Co1-B-10						

Memories show less sensitivity to the electron beam

Results – FLASH-NAND Memory (MOS/CMOS IC) MT29 (2)

Functional Tests					
Partition #	Pattern	Type of test	Status		
1	All 'O'	Static	Radiation degradation Less sensitive to electrons.		
2	All '1'	Static	No apparent degradation		
3	Checkerboard	Static	Radiation degradation Less sensitive to electrons.		
	Power Supply tests				
	Current		Status		
Idle			No apparent degradation		
Active			No apparent degradation		

Results – Transistor (Bipolar) 2N2222 (1)

•

Results – Transistor (Bipolar) 2N2222 (2)

Characteristics	Test Conditions	Status		
Collector-Base Cut-off Current	V _{CB} = 60V	No apparent degradation		
Emitter-Base Cutoff Current	$V_{EB} = 3V$	No apparent degradation		
Collector-Emitter Saturation Voltage	I _C = 150mA, I _B = 15mA	No apparent degradation		
Base-Emitter Saturation Voltage	l _c = 150mA, l _B = 15mA	No apparent degradation		
	V _{CE} = 10V, I _C = 100μA	Radiation degradation Similar for electrons and Co60 ELDRS		
Forward Current Transfer Patio	V _{CE} = 10V, I _C = 10mA	Radiation degradation Similar for electrons and Co60 ELDRS		
Forward-Current Transfer Ratio	V _{CE} = 10V, I _C = 150mA	Radiation degradation Similar for electrons and Co60 ELDRS		
	V _{CE} = 10V, I _C = 500mA	Radiation degradation Similar for electrons and Co60 ELDRS		

Results – OPAMP Analog ICs non ELDRS LM124 (1)

HDR Y

LDR Y

12 MeV e⁻

12 MeV e⁻

20 MeV e⁻

Results – OPAMP Analog ICs non ELDRS LM124 (2)

Results – OPAMP Analog ICs non ELDRS LM124 (3)

Characteristics	Test Conditions	Status
Power Supply Current	Vcc+ = 30V, Vcc- = Gnd	No apparent degradation
Input Bias Current	Vcc+ = 30V, Vcc- = Gnd, Vcm = +15V	Radiation degradation Higher degradation for electrons
Input Offset Current	Vcc+ = 30V, Vcc- = Gnd, Vcm = +15V	No apparent degradation
Input Offset Voltage	Vcc+ = 30V, Vcc- = Gnd, Vcm = 15V	Radiation degradation Similar for electrons and Co60
Common Mode Rejection Ratio	Vcc+=30V, Vcc- = Gnd, Vcm=-15V Vcc+=2V, Vcc- =-28, Vcm=-13V	Radiation degradation Higher degradation for electrons
Power Supply Rejection Ratio	Vcc- = Gnd, Vcm = $+1.4V$, $5V \le Vcc \le 30V$	Radiation degradation Similar for electrons and Co60
Voltage Gain	Vcc+ = 30V, Vcc- = Gnd, 1V ≤ Vo ≤ 26V, RI = 10K Ohms	No apparent degradation
Slew Rate: Rise	VCC+ = 30V, VCC- = Gnd	No apparent degradation
Slew Rate: Fall	VCC+ = 30V, VCC- = Gnd	No apparent degradation
Maximum Output Voltage Swing	VCC+ = 30V, VCC- = Gnd, VO = +30V, RL = 10KΩ	Radiation degradation Similar for electrons and Co60

Results – Reference Voltage Analog ICs displaying ELDRS LM4050 (1)

Results – Reference Voltage Analog ICs displaying ELDRS LM4050 (1)

Characteristics	Test Conditions	Status
	Ι _R =74 μΑ	Radiation degradation Similar for electrons and Co60 ELDRS
	I _R =100 μΑ	Radiation degradation Similar for electrons and Co60 ELDRS
Reference Voltage	I _R =1 mA	Radiation degradation Similar for electrons and Co60 ELDRS
	I _R =10 mA	Radiation degradation Similar for electrons and Co60 ELDRS
	I _R =15 mA	Radiation degradation Similar for electrons and Co60 ELDRS

Conclusions

□ 5 component types were selected for irradiation:

- Power MOSFET
- Flash-NAND Memory
- Bipolar Transistor
- OPAMP
- Reference Voltage
- Components were irradiated in 5 conditions different conditions:
 - Co60 LDR (ESTEC)
 - Co60 HDR (CTN-Lisbon)
 - 12 MeV HDR (HSM-Lisbon)
 - 12 MeV HDR (RADEF)
 - 20 MeV HDR (RADEF)

Most component parameters showed similar response to electron and Υ TID

- FLASH-NAND Memories showed less sensitivity to electron TID
- Some of OPAMP LM124's parameters showed enchanced sensitivity to electrons

Components showed more sensitivity to Co60 than to 12 MeV and 20 MeV electron beams, except for three measured OPAMP parameters: Input Bias Current (+) and (-) and CMRR for which higher sensitivity to electrons was observed. This can be due to TNID effects.

ACKNOWLEDGMENTS

The work of P. Assis, P. was partly supported by Portuguese national funds and FEDER funds within COMPETE-Programa Operacional Factores de Competitividade through Fundação para a Ciência e a Tecnologia, Portugal. We would like to thank Geraldine Chaumont from ST Microelectronics and Kirby Kruckmeyer from TEXAS Instruments for providing the components for the tests.

We would also like to thank Paula Campos from CTN-IST and Esmeralda Poli and Luis Prudêncio from Hospital de Santa Maria radiotherapy unit in for all their support in the irradiation campaigns.

