

JUICE NAND FLASHs Total dose radiation tolerance

ESA-CNES Radiation Final Presentation Days on Space Environments and Radiation Effects on EEE components

ITT AO/1-7740/13/NL/HB - Radiation testing of memories for the JUICE Mission

Main objective: Assess commercial state-of-the art memories radiation tolerance for JUICE mission.

Presentation focused on Nand Flash total dose radiations tolerance

Outline

Parts selection

Reverse Construction Analysis

Test plan

□ Test tooling description

Results

NAND FLASH parts selection

March 2017

Parts Selection and criteria

Key drivers for memory selection:

- Mission lifetime is more than 11 years in space (7.6 years cruise and 3.5 years in the Jovian system).
- Without massive shielding mass, total ionizing dose required 200 kRad(Si).
- Minimum total dose tolerance should be 50 kRad(Si) with sufficient shielding mass.
- Storage capacity as a minimum 60 Gb and up to 500 Gb
- Download data rate < 100 Mbps</p>

Parts selection has been performed according to the following criteria :

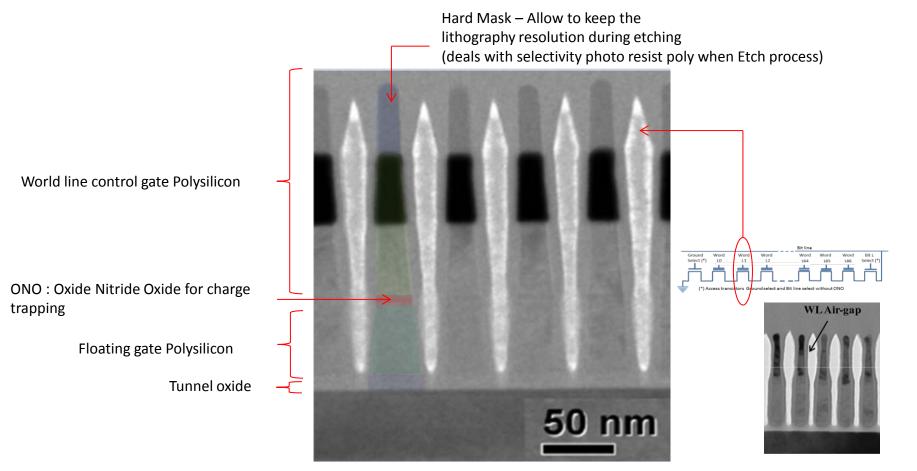
- State of the art technology (end of 2015, beginning of 2016).
- Non obsolescence of the memory and new devices that haven't been already tested against radiations.
- Size and architecture.
- SLC (Single Level Cell) only for radiation tolerance purpose.
- Package

	Hynix	Toshiba	Macronix	Spansion	Winbond
Part type	H27U4G8F2D	TC58NVG2S0HTAI0	MX30LF4G18AC	S34ML04G200TFI00	W29N01GVSIAA
Туре	SLC Nand Flash Memory	SLC Nand Flash Memory	SLC Nand Flash Memory	SLC Nand Flash Memory	SLC Nand Flash Memory
Capacity / Organization	4 GB / 512M x 8BIT 1 bit ECC/528 bytes	4 GB / 512M x 8BIT 8 bit ECC/512 bytes	4 GB / 512M x 8 BIT 4 bit ECC	4 GB / 512M x 8 BIT 4 bit ECC	1 GB / 128M x 8 BIT 1 bit ECC/528 bytes
Date code	1503	1509	1444	1442	1437
Package	TSOP48 (12x20mm)	TSOP48 (12x20mm)	TSOP48 (12x20mm)	TSOP48 (12x20mm)	TSOP48 (12x20mm)

Hirex Engineering a Company of Alter Technology

This document is the property of Hirex Engineering, it cannot be reproduced or communicated without its authorization

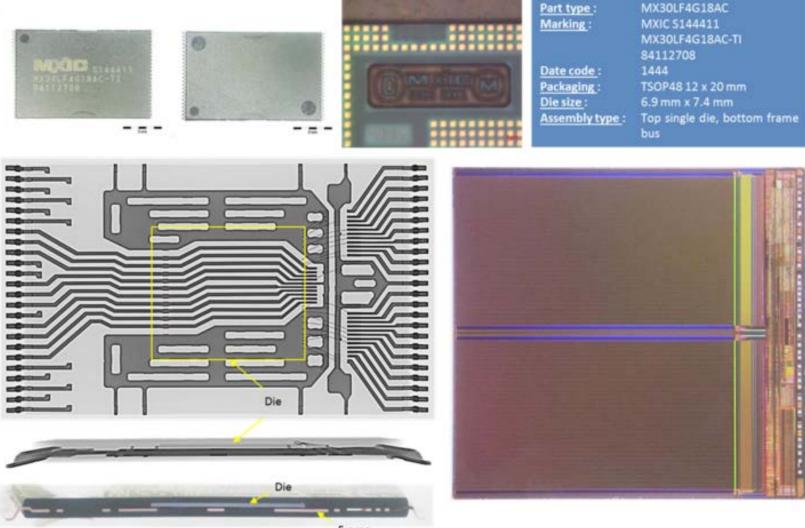
March 2017



Reverse Construction Analysis

NAND FLASHs Construction Analysis summary

Main challenge for this type of technology is the process capability with the die manufacturing lithography and etching tools. Repeatability of cell spacing Air Gap and minimum Critical Dimension (CD's) patterns definition are most likely the main yield detractors on these parts.


Hirex Engineering a Company of Alter Technology

This document is the property of Hirex Engineering, it cannot be reproduced or communicated without its authorization

NAND FLASHs

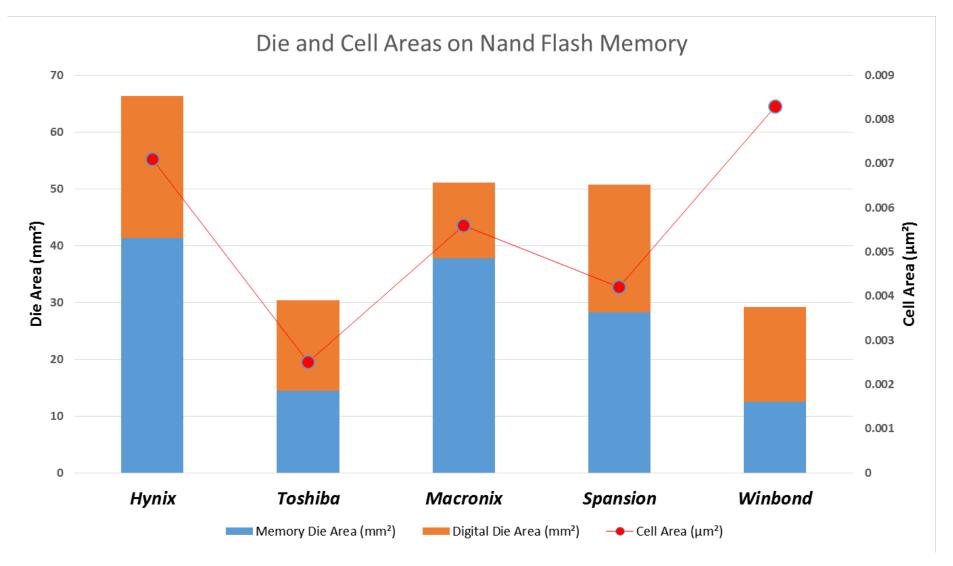
Construction Analysis (Ex: Macronix Nand Flash)

Frame

Hirex Engineering a Company of Alter Technology

This document is the property of Hirex Engineering, it cannot be reproduced or communicated without its authorization

NAND FLASHs Construction Analysis comparison


	Hynix	Toshiba	Macronix	Spansion	Winbond
Die size mm (area mm²)	7.3 x 9.1 (66.4)	4.9 x 6.2 (30.4)	6.9 x 7.4 (51.1)	6.5 x 7.8 (50.7)	5.3 x 5.5 (29.2)
Assembly type	Top single die + Top frame bus	Flip single die + Top frame bus	Top single die + bottom frame bus	Top single die + bottom frame bus	Top single die + bottom frame bus
Serial word lines	34	7 – 1 66	34	34	32
Memory/Digital area (%)	62% / 38%	47% / 53%	74% / 26%	56% / 44%	43% / 57%
Memory cell area (µm²)	0.0071	0.0025	0.0056	0.0042	0.0083
Minimum pitch (nm)	83	48	65	64	91
Critical dimension (nm)	41	24	32	32	45
Air gap (top cells level)	Yes	No	Partial	Yes	No
Cells (bit line axis)	BAAAA		876 676 8	66667	AAA
Ground Word Word Word Word Word Word Word U La	ord Word Bit L L66 Select (*)				

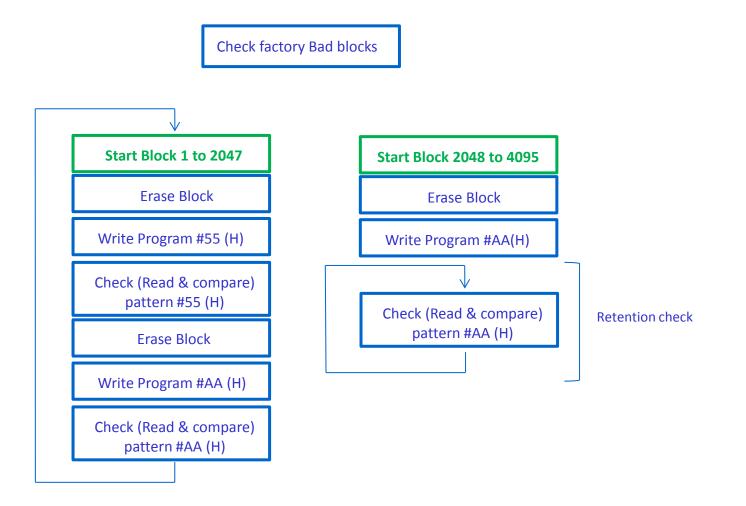
Hirex Engineering a Company of Alter Technology

This document is the property of Hirex Engineering, it cannot be reproduced or communicated without its authorization

ass transistors. Ground select and Bit line select without ONC

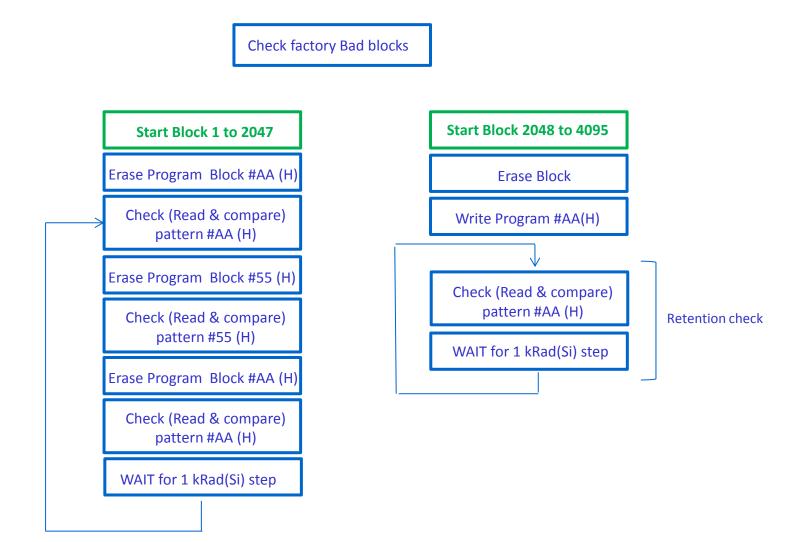
Hirex Engineering a Company of Alter Technology

This document is the property of Hirex Engineering, it cannot be reproduced or communicated without its authorization



Test plan

 \succ For each reference : ➤ 10 devices in HDC (High Duty Cycle) bias ➢ 10 devices in LDC (Low Duty Cycle) bias \geq 10 OFF devices (pins connected to ground) Devices are irradiated up to 200 Krad (Si) with Co60 Power monitoring of DUT bias board \geq Electric Measurements steps are performed at 20, 30, 50, 100, 150 and 200 Krad (Si) ➢After irradiation, 24h @25°C and 168h @100°C annealing are performed on devices Electric Measurements steps are performed after each annealing


In situ: FPGA based tester and biasing boards Software description HDC (High Duty Cycle)

March 2017

In situ: FPGA based tester and biasing boards Software description LDC (Low Duty Cycle)

Electrical test system description

Parameter tests list table (Macronix as an example)

PARAMETERS	SYMBOLS	TEST CONDITIONS	MIN	мах	UNITS				
DC									
Continuity Neg	Cont_Neg	Iin=-100uA	-1.5	-0.2	v				
Input Leakage Current Low	ILIL	Vin=0V , VCC= VCCmax (3.6V)	-10	10	μА				
Input Leakage Current High	ILIH	Vin= VCC= VCCmax (3.6V)	-10	10	μА				
Output Leakage Current Low	ILOL	Vout=0V , Vcc = 3.6V DQ are disabled	-10	10	μА				
Output Leakage Current High	ILOH	Vout=VCCmax, Vcc = 3.6V DQ are disabled	-10	10	μΑ				
Output Low Voltage	VOL	IOL=2.1mA, Vcc = 3.3V	0.4	-	v				
Output High Voltage	VOH	IOH=-400uA Vcc = 3.3V	-	2.4	v				
Input Low Voltage	VIL	Vcc = 3.3V	-	0.66	v				
Input High Voltage	VIH	Vcc = 3.3V	2.64	-	v				
	Power	supply (VCC =3.3V)							
Operating Current, Page Read	ICC1 CODE	trc=25ns CE/=Vil, Iout=0mA	-	30	mA				
Operating Current, Program	ICC2 CODE	-	-	30	mA				
Operating Current, Erase	ICC3 CODE	-	-	30	mA				
Standby Current TTL	ISB ICC4	CE/=XIH WP/=0V/VCC, VCC & VCCQ	-	1	mA				
Standby Current CMOS	ISB_ICC5	CE/=VCC-0.2Ve WP/=0V/VCC, VCC & VCCQ	-	50	μΑ				

Electrical test system description Parameter tests list table (Macronix as an example)

0/00-2 20/ 10-	# Dulea Laurale =00/ to 1/00 Ter	AC out and Output Timing Levels=VCC/2) Mode 0 t	end t	TTI at	
Program Time	Prog	PROGRAM PAGE operation time, internal ECC disabled, GO NOGO	-	600	µs.
Block Erase Time	tBera	BLOCK ERASE operation time , GO NOGO		3.5	ms
CLE Setup Time	1CLS	-	-	10	ns
CLE Hold Time	SCLH.	-		5	ns
CE/ Setup Time	105	*		15	ns
CE/ Hold Time	<u>10</u> H	GO NOGO	-	5	ns
WE/ Pulse Width	<u>tWP</u>	*	-	10	ns
ALE Setup Time	186.5	¥.	- 44	10	ns
ALE Hold Time	1819	•		5	ns
Data Setup Time	10.5	*	+	7	ns
Data Hold Time	28	-	-	5	ns
Write Cycle Time	tWC	-	•	20	ns
WE/ High Hold Time	<u>tWH</u>	GONOGO	-	7	ns
ALE to RE/ Delay	<u>MAR</u>	GO NOGO	-	10	ns
CLE to RE/ Delay	1018	GO NOGO	-	10	ns
RE/ Pulse Width	18.9			10	ns
Read Cycle Time	1BC		-	20	ns
RE/ Access Time	1856	+	•	16	ns
WE High to Busy	tWB	-	-	100	ns
CE/ Access Time	1CEA	÷	-	25	ns
RE/ High Hold Time	IREH	GO NOGO	+	7	ns
WP/ High to WE/ Low	DXXX	GO NOGO	•	100	ns
		Functionality			
Checkerboard	Func ChkBrd	Erase memory Write , Read pattern Checkerboard Block#0 Note 1	•	-	Pass/Fail
SLC-March	Func SLC March	Erase memory Write , Read with SLC March Algorithm Block#0	-	-	Pass/Fail
Retention Check	Euro READ Childred Retention	Read with \$55 \$AA on Block#81 (OFF samples only)	•	-	Pass/Fail

Note 1: Pattern checkerboard is made of Erase, Write 55 & AA, Read 55 & AA, Erase, Write AA & 55, Read AA & 55, Erase

Hirex Engineering a Company of Alter Technology

This document is the property of Hirex Engineering, it cannot be reproduced or communicated without its authorization

Electrical test system description Specific SLC – March detection Algorithm

Specific March algorithm fore NAND FLASH for :

AF

- TF: Transition Fault Detection
- AF: Address Fault Detection
- DF: Data Fault Detection

SLC-March employs march algorithm and patternbased approach to detect all faults.

- The march algorithm detects faults by controlling the operation address order.
- The pattern P_{SLC} detects faults happened in a page

SAF, SOF

 $SLC - March = \{(e); \Uparrow (r1, w0, r0); \clubsuit (r0);$

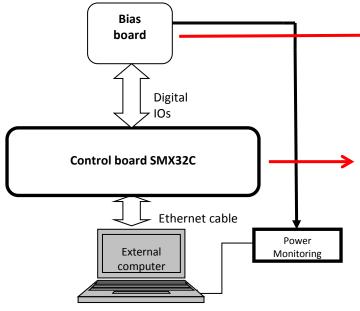
DF

w0 : a write operation on a page of all-0's pattern r0/r1: a read operation on a page, expecting all-0's/all-1's pattern

Hirex Engineering a Company of Alter Technology

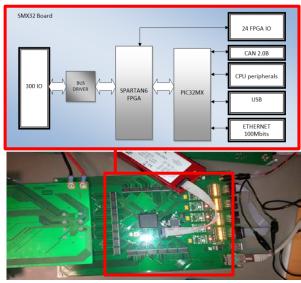
This document is the property of Hirex Engineering, it cannot be reproduced or communicated without its authorization

TF


Test tooling descriptions Hardware and Software

In situ (FPGA based tester and biasing boards)

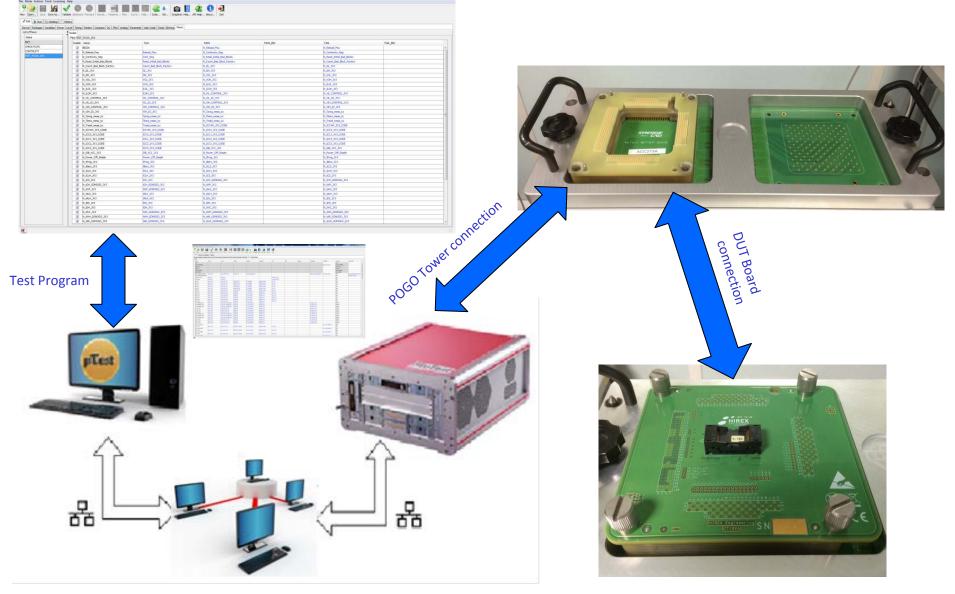
Electrical test system using an ATE (Automatic Test Equipment)


In situ: FPGA based tester and biasing boards Hardware description

User interface app. on PC

- Configures test sequence
- Sends test sequence commands to Control board
- Records error data, status data and log data received from Control board

Control board SMX32C

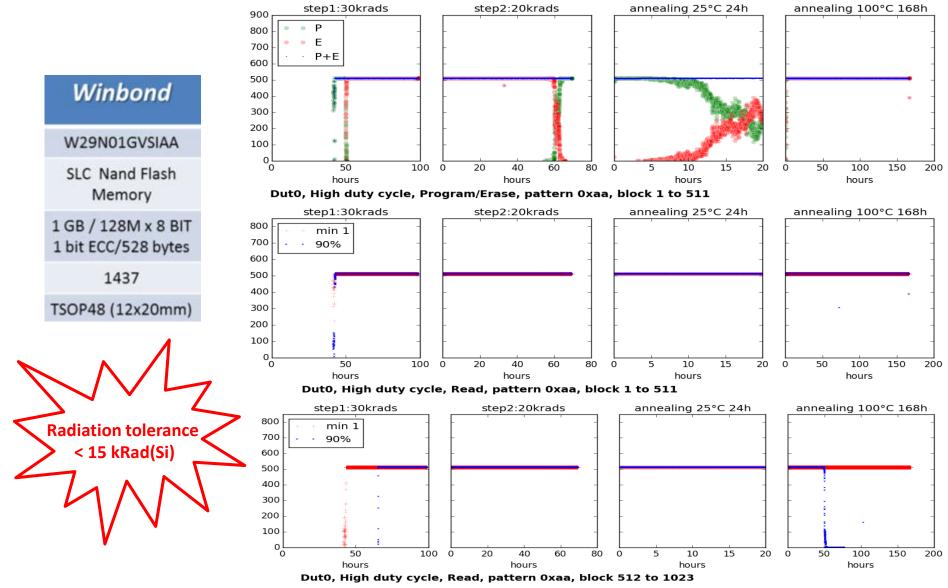


Bias board

- Control board
 - Controls and commands DUTs in parallel
 - Sends status and error data to the PC

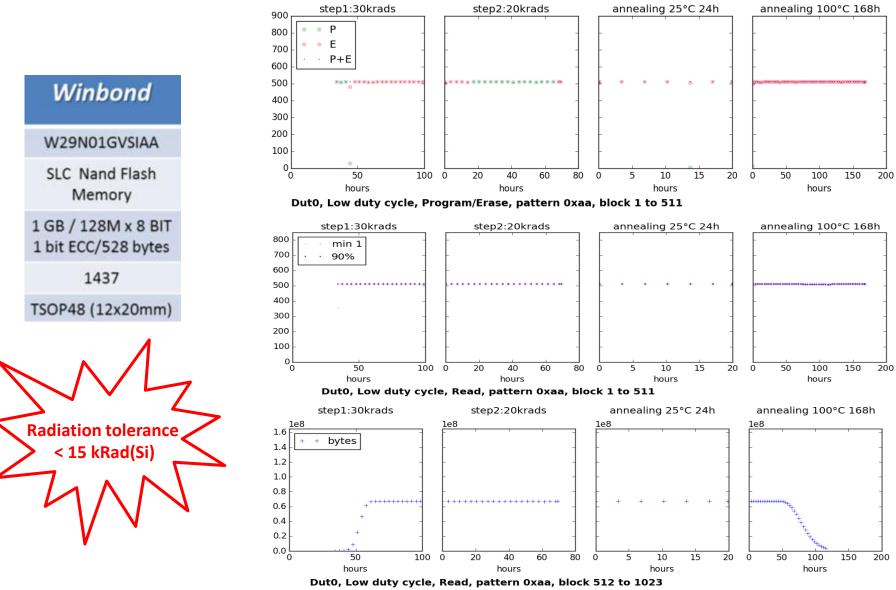
Hirex Engineering a Company of Alter Technology

Overall Campaign Results


- In situ (FPGA based tester and biasing boards).
- Electrical test system using an ATE (Automatic Test Equipment).
- Based on results we have differentiated two families
 - Preselected references for SEE irradiation campaigns
 - Non selected references for SEE irradiation campaigns

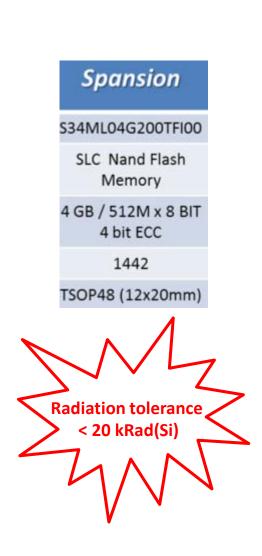
	HRX – Non selected refe								
	Hynix	Hynix Toshiba Macron		Spansion	Winbond				
Part type	H27U4G8F2D	TC58NVG2S0HTAI0	MX30LF4G18AC	S34ML04G200TFI00	W29N01GVSIAA				
Туре	SLC Nand Flash Memory	SLC Nand Flash Memory	SLC Nand Flash Memory	SLC Nand Flash Memory	SLC Nand Flash Memory				
Capacity / Organization	4 GB / 512M x 8BIT 1 bit ECC/528 bytes	4 GB / 512M x 8BIT 8 bit ECC/512 bytes	4 GB / 512M x 8 BIT 4 bit ECC	4 GB / 512M x 8 BIT 4 bit ECC	1 GB / 128M x 8 BIT 1 bit ECC/528 bytes				
Date code	1503 1509		1444	1442	1437				
Package	TSOP48 (12x20mm)	TSOP48 (12x20mm)	TSOP48 (12x20mm)	TSOP48 (12x20mm)	TSOP48 (12x20mm)				

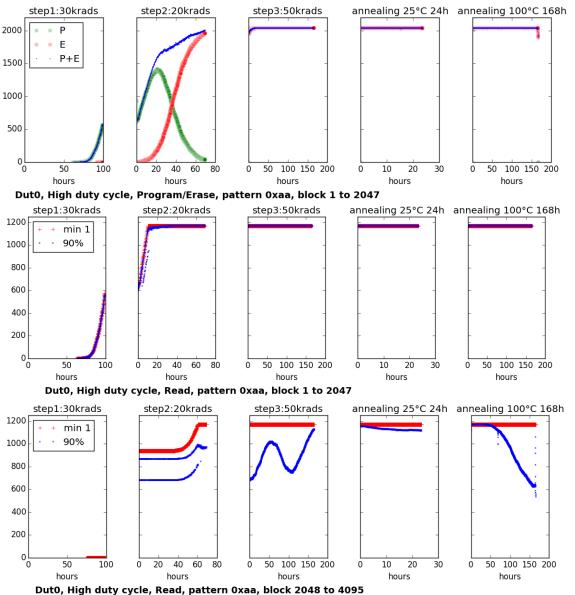
w a sha sha sha sha wa fa wa w



In situ: HDC non selected references results

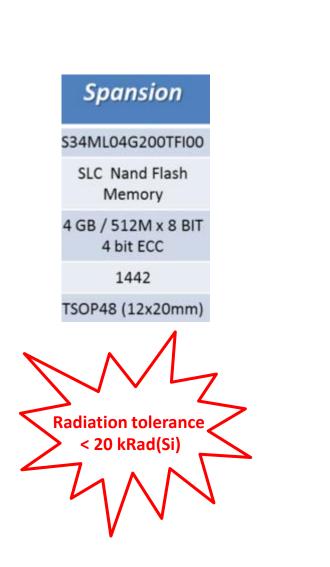
In situ: LDC non selected references results

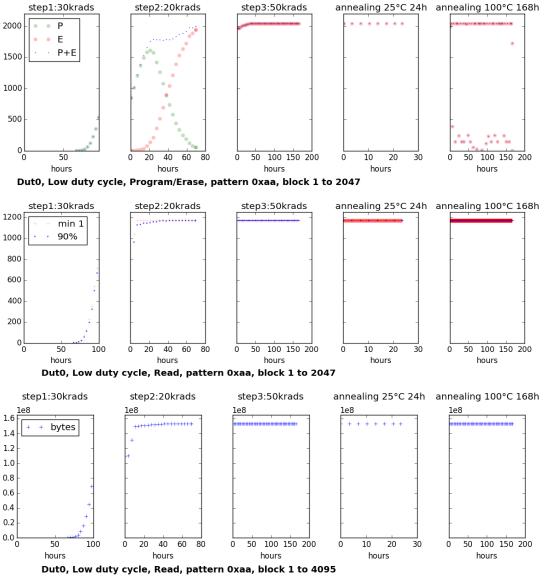

Hirex Engineering a Company of Alter Technology


This document is the property of Hirex Engineering, it cannot be reproduced or communicated without its authorization

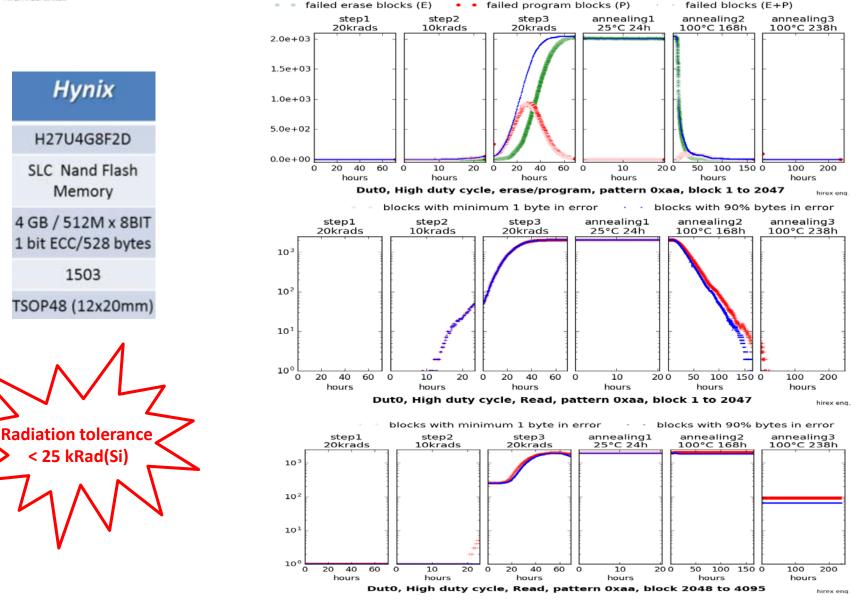
21

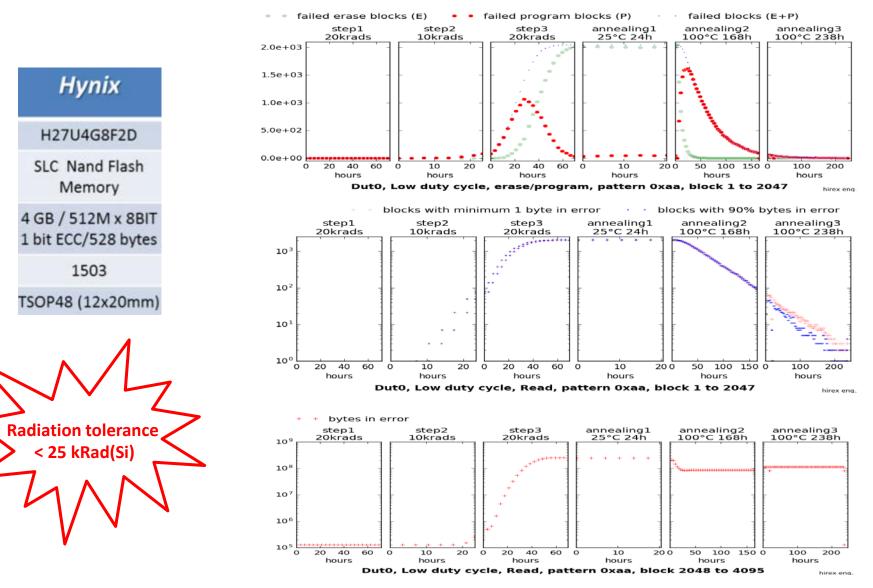
In situ: HDC non selected references results




Hirex Engineering a Company of Alter Technology

This document is the property of Hirex Engineering, it cannot be reproduced or communicated without its authorization


In situ: LDC non selected references results



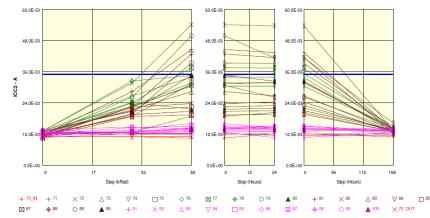
In situ: HDC non selected references results

In situ: LDC non selected references results

HIREX ENGINEERING ATE: HDC and LDC non selected references results

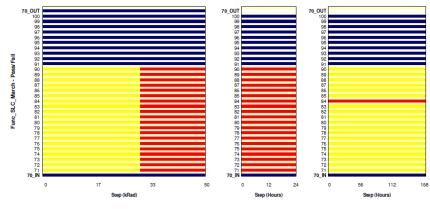
				BIAS HDC (H	IGH DUTY CYCLE)						
Manufacturer	Product	DC		Power Supply		AC (timing	AC (timings)		Functional		
		Steps	Annealing 24h/168h	Steps	Annealing 24h/168h	Steps	Annealing 24h/168h	Steps	Annealing 24h/168h		
Winbond	W29N01GVSIAA	30 kRad(Si)	Complete	50 kRad(Si)	Complete	30 kRad(Si)	Complete	30 kRad(Si)	Complete		
Spansion	S34ML04G200TFI00	No Failure up to 100kRad(Si)	Complete	No Failure up to 100kRad(Si)	Complete	30 kRad(Si)	No Recovery	30 kRad(Si)	No Recovery		
Hynix	H27U4G8F2D	30 kRad(Si)	Partial	No Failure up to 50kRad(Si)	Complete	30 kRad(Si)	Partial	30 kRad(Si)	Partial		
				BIAS LDC (L	OW DUTY CYCLE)						
Manufacturer	Product	DC		Power Sup	ply	AC (timings)		Functional			
		Steps	Annealing 24h/168h	Steps	Annealing 24h/168h	Steps	Annealing 24h/168h	Steps	Annealing 24h/168h		
Winbond	W29N01GVSIAA	30 kRad(Si)	Complete	50 kRad(Si)	Complete	30 kRad(Si)	Complete	30 kRad(Si)	Complete		
Spansion	S34ML04G200TFI00	No Failure up to 100kRad(Si)	Complete	No Failure up to 100kRad(Si)	Complete	30 kRad(Si)	No Recovery	30 kRad(Si)	No Recovery		
Hynix	H27U4G8F2D	30 kRad(Si)	Partial	No Failure up to 50kRad(Si)	Complete	30 kRad(Si)	Partial	30 kRad(Si)	Partial		
				BI	AS OFF						
Manufacturer	Product	DC		Power Sup	ply	AC (timing	gs)	Functional		Retention	
		Steps	Annealing 24h/168h	Steps	Annealing 24h/168h	Steps	Annealing 24h/168h	Steps	Annealing 24h/168h	Steps	Annealing 24h/1
Winbond	W29N01GVSIAA	No Failure up to 50kRad(Si)	Complete	50 kRad(Si)	Complete	No Failure up to 50kRad(Si)	Complete	No Failure up to 50kRad(Si)	Complete	No Failure up to 50kRad(Si) Complete
Spansion	S34ML04G200TFI00	No Failure up to 100kRad(Si)	Complete	No Failure up to 100kRad(Si)	Complete	100 kRad(Si)	No Recovery	100 kRad(Si)	No Recovery	50 kRad(Si)	No Recovery
Hynix	H27U4G8F2D	No Failure up to 100kRad(Si)	Complete	No Failure up to 100kRad(Si)	Complete	No Failure up to 100kRad(Si)	Complete	100 kRad(Si)	Partial	100 kRad(Si)	No Recovery
1											

PLACH DUTY CYCLE


Parameter : Operating Current. Program : ICC2

Test conditions :

Unit : A


Spec Limit Max : 35.0E-03

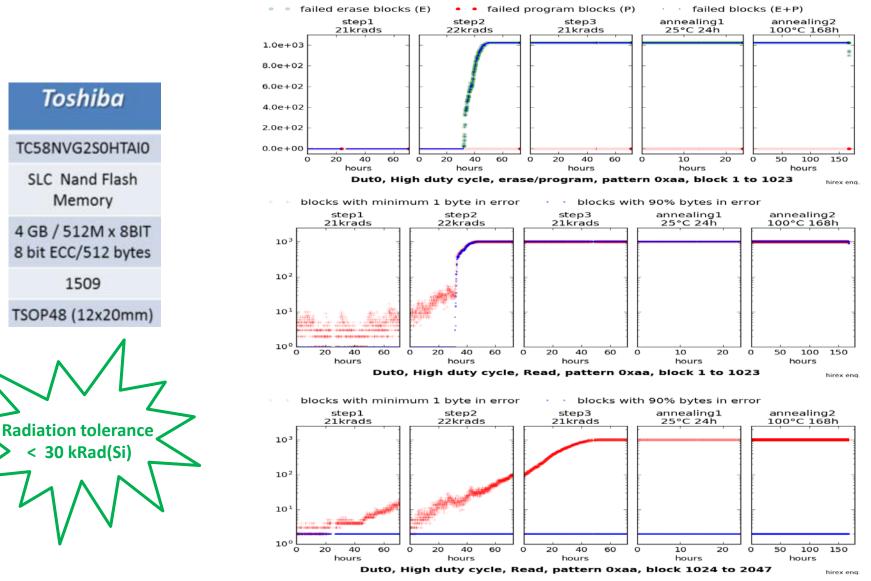
Spec limits are represented in bold lines on the graphic.

Parameter : SLC-March : Func_SLC_March

Test conditions : Erase memory Write . Read with SLC March Algorithm Block#0 Unit : Pass/Fail No spec limit specified.

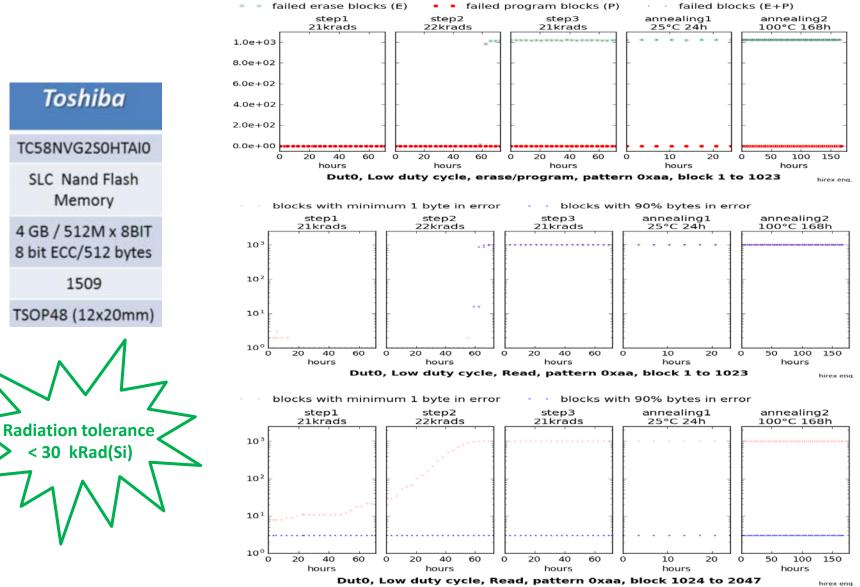
Passed Failed No Data Passed -> Failed Or Failed -> Passed

Examples: Winbond ICC and SLC_March functional test


A 86

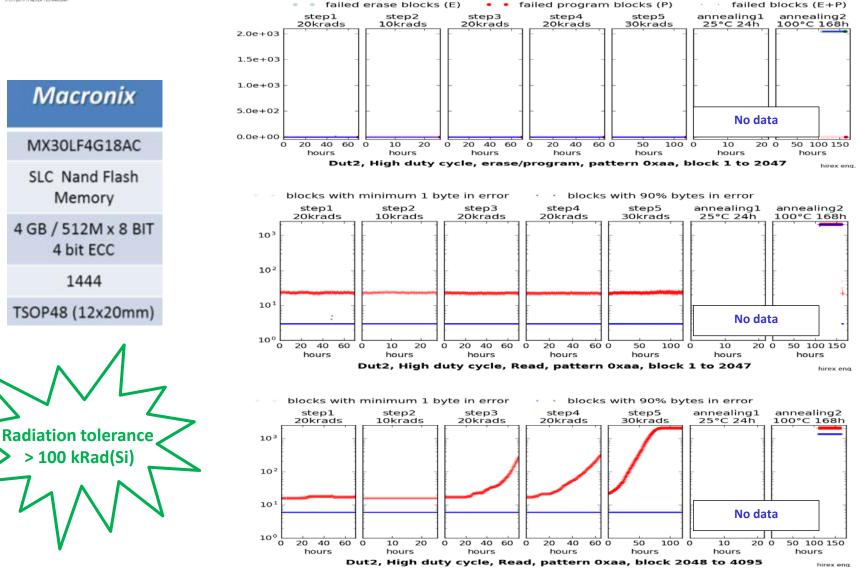
Hirex Engineering a Company of Alter Technology

This document is the property of Hirex Engineering, it cannot be reproduced or communicated without its authorization



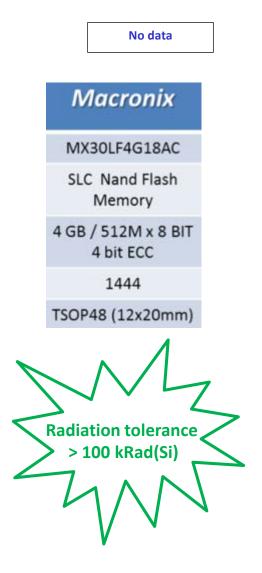
In situ: HDC selected references results

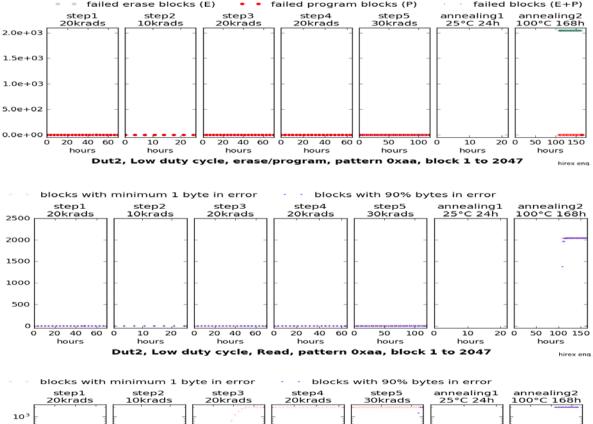
In situ: LDC selected references results

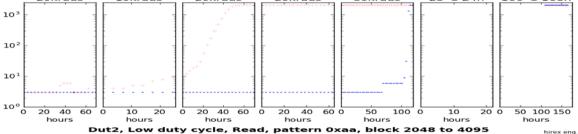


Hirex Engineering a Company of Alter Technology

This document is the property of Hirex Engineering, it cannot be reproduced or communicated without its authorization


In situ: HDC selected references results



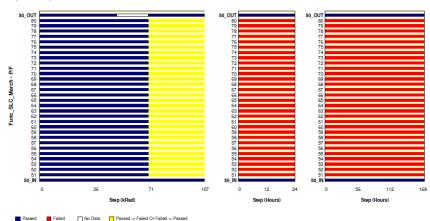

March 2017

In situ: LDC selected references results



ATE: HDC and LDC selected references results

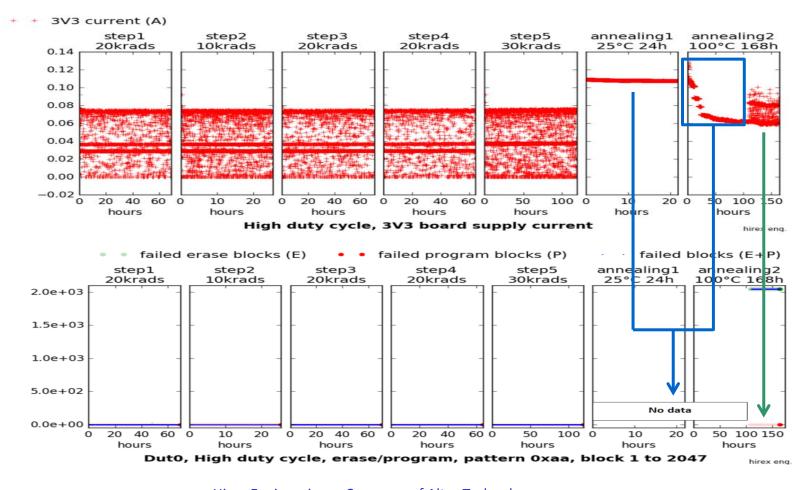
	BIAS HDC (HIGH DUTY CYCLE)										
Manufacturer	Product	DC		Power Supp	ply	AC (timing	ζs)	Functiona	al		
		Steps	Annealing 24h/168h	Steps	Annealing 24h/168h	Steps	Annealing 24h/168h	h Steps	Annealing 24h/168h	-	ļ
Toshiba	TC58NVG2S0HTAI0	No Failure up to 200kRad(Si)	Complete	No Failure up to 200kRad(Si)	Complete	50 kRad(Si)	No Recovery	30 kRad(Si)	No Recovery	1	, , , , , , , , , , , , , , , , , , ,
Macronix	MX30LF4G18AC	No Failure up to 100kRad(Si)	Complete	No Failure up to 100kRad(Si)	Complete	No Failure up to 100kRad(Si)	No Recovery	No Failure up to 100kRad(Si)	No Recovery	1	ļ
1				BIAS LDC (L	OW DUTY CYCLE)						ļ
Manufacturer	Product	DC		Power Supp	ply	AC (timing	{s)	Functiona	al		, j
		Steps	Annealing 24h/168h	Steps	Annealing 24h/168h	Steps	Annealing 24h/168h	h Steps	Annealing 24h/168h		
Toshiba	TC58NVG2S0HTAI0	No Failure up to 200kRad(Si)	Complete	No Failure up to 200kRad(Si)	Complete	50 kRad(Si)	No Recovery	50 kRad(Si)	No Recovery	1	ļ
Macronix	MX30LF4G18AC	No Failure up to 100kRad(Si)	Complete	No Failure up to 100kRad(Si)	Complete	No Failure up to 100kRad(Si)	No Recovery	No Failure up to 100kRad(Si)	No Recovery	1	ļ
1				BI	IAS OFF						
Manufacturer	Product	DC		Power Supp	ply	AC (timing	s))	Functiona	al	Reten	ition
l		Steps	Annealing 24h/168h	Steps	Annealing 24h/168h	Steps	Annealing 24h/168h	h Steps	Annealing 24h/168h	Steps	Annealing 24h/168h
Toshiba	TC58NVG2S0HTAI0	No Failure up to 200kRad(Si)	Complete	No Failure up to 200kRad(Si)	Complete	150 kRad(Si)	Complete	100 kRad(Si)	Partial	50 kRad(Si)	No Recovery
Macronix	MX30LF4G18AC	No Failure up to 100kRad(Si)	Complete	No Failure up to 100kRad(Si)	Complete	No Failure up to 100kRad(Si)	No Recovery	No Failure up to 100kRad(Si)	No Recovery	30 kRad(Si)	No Recovery



Spec Limit Max : 30.0E-03 Spec limits are represented in bold lines on the graphic.

No spec limit specified.

Examples: Macronix ICC and SLC_March functional test


Lessons Learning forces for further investigations

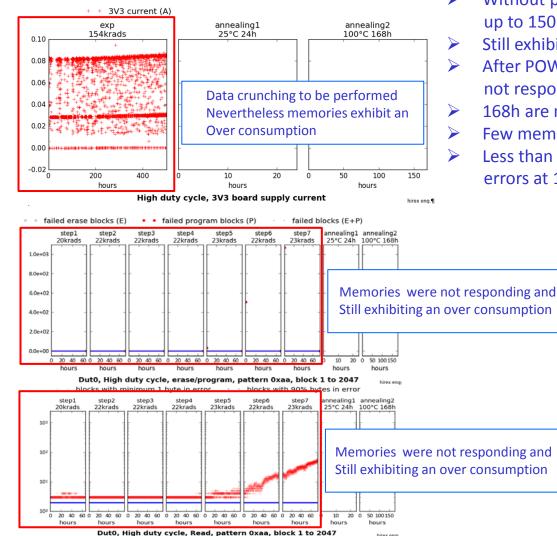
March 2017

Lessons Learning forces For further investigations

- We have observed that after a certain cumulated dose rate (#100 kRad(Si), the power reset (ON/OFF) has an influence on the device functionality (MACRONIX).
- > This phenomenon is detected during the continuous BIAS current monitoring along the irradiation and annealing steps.

2nd irradiation campaign description

- > Performed on MACRONIX selected part for heavy ion test.
 - 20 additional parts have been irradiated.
 - 10 parts using HDC (High Duty Cycle) bias.
 - 10 parts using LDC (Low Duty Cycle) bias.
 - No Power ON/OFF.
 - 1 single irradiation step followed by 24h @ 25°C and 168h @ 100°C:
 - From 0 kRad(Si) up to 150 kRad(Si) for the MACRONIX parts.
 - A cycle of READ/WRITE will be performed at each "virtual irradiation" steps (each 20 kRad(Si).
 - Electrical measurements performed at the end of the irradiation steps and after each annealing.


	Campaign Macronix - 2ème essai										
Step	Dose Rate (Rad/H)	Dose (Rad(Si))	St	art Date	Ei	nd Date	Total Dose	Step	Comment		
#1	-	-	Jeudi	02/02/2017 16:00	Jeudi	02/02/2017 16:00	-	Init	Installation		
#2	300	20100	Jeudi	02/02/2017 16:00	Dimanche	05/02/2017 11:00	20100	R/W			
#3	300	21600	Dimanche	05/02/2017 11:00	Mercredi	08/02/2017 11:00	41700	R/W			
#4	300	21600	Mercredi	08/02/2017 11:00	Samedi	11/02/2017 11:00	63300	R/W			
#5	300	21600	Samedi	11/02/2017 11:00	Mardi	14/02/2017 11:00	84900	R/W			
#6	300	21600	Mardi	14/02/2017 11:00	Vendredi	17/02/2017 11:00	106500	R/W			
#7	300	21600	Vendredi	17/02/2017 11:00	lundi	20/02/2017 11:00	128100	R/W			
#8	300	22500	Lundi	20/02/2017 11:00	Jeudi	23/02/2017 14:00	150600	150K	Out for Annealing		
#9	24	-	Jeudi	23/02/2017 16:00	Vendredi	24/02/2017 16:00	Room/24H	24H			
#10	166	-	Vendredi	24/02/2017 18:00	Vendredi	03/03/2017 16:00	100°C/168H	168H	End RVT		

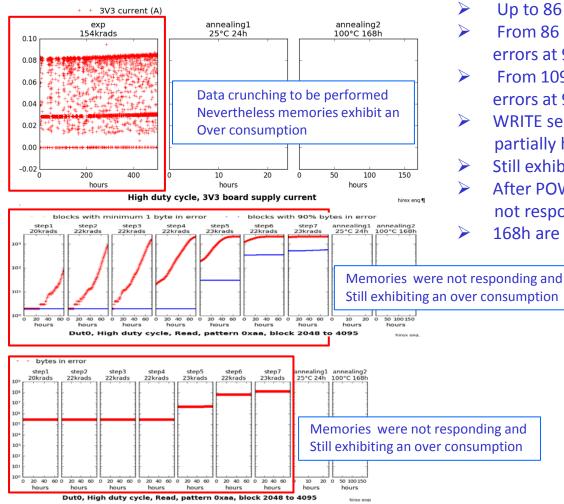
Macronix 2nd TID campaign

2nd irradiation campaign HDC results

Erase/Program Read pattern :

- Without power ON/OFF memories are functional up to 150 kRad(Si).
- Still exhibiting an over consumption after the POWER OFF.
- After POWER OFF same phenomenon, memories are not responding.
- 168h are not enough to allow memories to recover.
- Few memory errors occur around 100 kRad(Si).
- Less than 100 blocks are concerned with these memory errors at 150 Krad(Si)

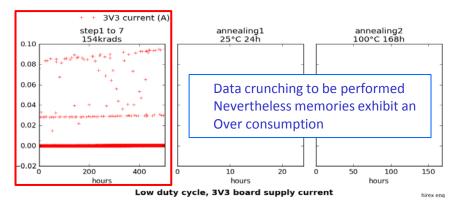
Hirex Engineering a Company of Alter Technology

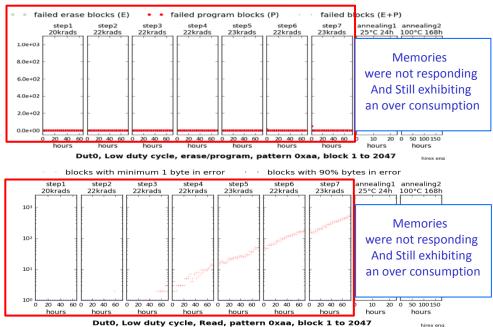

hirex eng

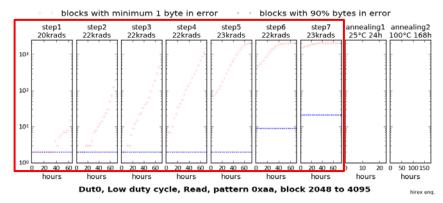
This document is the property of Hirex Engineering, it cannot be reproduced or communicated without its authorization

2nd irradiation campaign HDC results

Read pattern :




- Without power ON/OFF memories are functional up to 150 kRad(Si).
- > Up to 86 krad(Si) no major block errors at 90%.
- From 86 kRad(Si) up to 109 kRad(Si) less than 50 block errors at 90%.
- From 109 kRad(Si) up to 154 kRad(Si) less than 600 block errors at 90%.
- WRITE sequence after each 20 kRad(Si) allows to partially heal the memory errors.
- Still exhibiting an over consumption after the POWER OFF.
- After POWER OFF same phenomenon, memories are not responding.
- 168h are not enough to allow memories to recover.


2nd irradiation campaign LDC results

Erase/Program Read pattern :

Read pattern :

Erase/Program Read pattern :

- Without power ON/OFF memories are functional up to 150 kRad(Si).
- Still exhibiting an over consumption after the POWER OFF.
- After POWER OFF same phenomenon, memories are not responding.
- 168h are not enough to allow memories to recover.
- Memory block errors occur around 86 kRad(Si).
- Less than 600 blocks are concerned with these memory errors at 150 Krad(Si)

Read pattern :

Same behavior as the HDC Read pattern but with much less block errors (150 kRad(Si) → less than 10 blocks in error at 90%.

Hirex Engineering a Company of Alter Technology

Conclusions

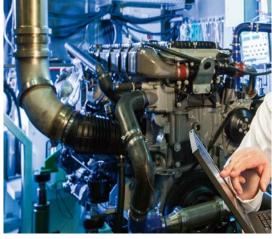
- Despite the fact that technologies are similar, radiation tolerance across the 5 selected NAND FLASH is different.
- Charge pump block seems to be the critical element for all the memories except MACRONIX as it's involved in ERASE/PROGRAM operation.
- One out of the 5 selected devices seems suitable for JUICE mission (MACRONIX) at least for Total dose radiation.
- > POWER ON/OFF has an impact on total dose radiation tolerance.
- Much less memory errors when ERASE/PROGRAM cycles are implemented periodically compare to the READ only test sequence.
- For the READ only test, number of errors is related to number of reads (more reads, more errors)

Proposed Next Steps

- For MACRONIX device extend the 168h @ 100°C annealing to check if memory reach a complete recovery.
- After partial or complete recovery, read memory erroneous bytes and check the number of bits in error per byte to verify how much ECC is able to correct erroneous data.
- Perform a failure analysis to understand if the over consumption issue is related to a specific element/area or if it's spread across the full die.

Backup Slides

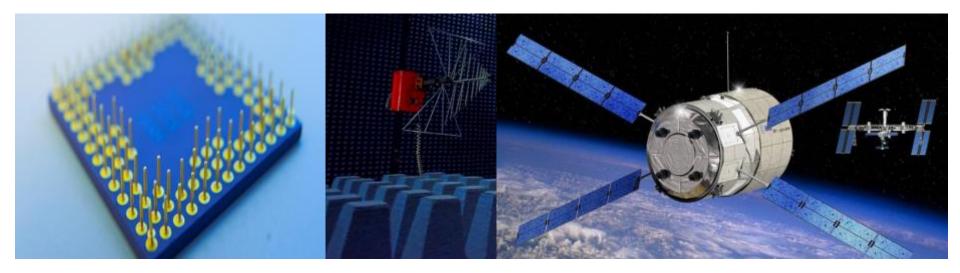
Company Overview


TÜV NORD Group main areas

ENERGY

MOBILITY

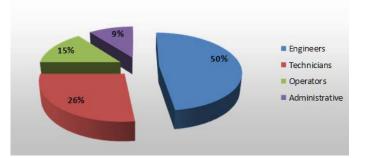
HEALTH AND NUTRITION

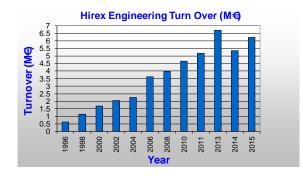

NATURAL RESOURCES

AEROSPACE & ELECTRONIC

Aerospace & Electronic Business Unit

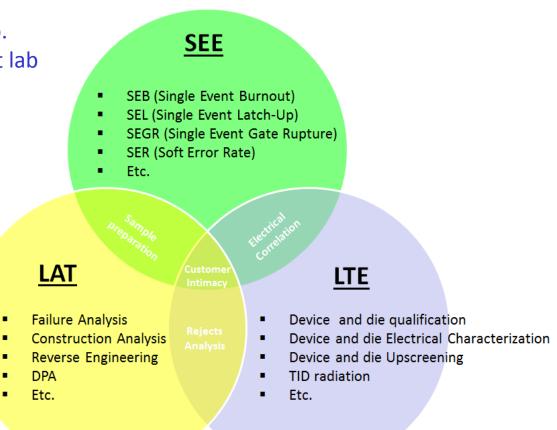
Alter technology group: with 30 years experience in the sector.





Hirex Profile

- Hirex Engineering founded in January 1993.
- Hirex Engineering joined ALTER Technology Group in January 2007.
 - ATN based in Madrid, Seville, Roma, Portsmouth and Shanghai.
 - ATN employees 230 as of today.
 - ATN Turn-over 65 M€.
- 100% Privately owned by TÜV NORD since 29th June 2011.
- Hirex Engineering :
 - Based in Toulouse.
 - 48 employees as of today.
 - 1800 m² Facility.
 - Certified ISO 9001, EN 9100 and ISO 14001.



44

Expertise & Activities

3 labs for a focused organization:

- SEE: Radiation lab.
- LAT: Semiconductor Technology lab.
- LTE: Electrical & environmental test lab

Hirex Engineering a Company of Alter Technology