

Risk assessment of SEE events due to high energy electrons during the JUICE mission

N. Sukhaseum, A. Varotsou, B. Vandevelde and C. Boatella-Polo

ESA contract ref. AO/1-8191/15/NL/KML

07/03/2017 – ESA/CNES Presentation Days

SEE risk assessment for space projects

Particle beam testing

- Heavy ions
- High energy protons

SEE rate calculation

Mission environment (GCR, solar particles, trapped protons)

2

- Omere, Spenvis, Creme...
- Studies have demonstrated potential SEE sensitivity
 - Electrons
 - Low energy protons (direct ionization)

A. Samaras et al. NSREC 2014

Juice mission

- Significant high energy electron fluxes
- SEE electron risk has to be investigated

Juice env. specification iss. 5.3

Aim of the study

- Measure experimentally all these contributions
 - Standard and "new" effects
- On the same devices
- Calculate the corresponding SEE rates
- Put in evidence the predominant contributions

COSA Devices Under Test

Device selection

Tests & radiations

- SRAM technology memory for SEU testing
 - Basic technology and event type
- High integration level (below 45 nm tech. node)
 - Potentially sensitive to electrons and low energy protons
- Can be put under operation with significant distance between control board and device under test
 - High energy electron and proton tests
- Can be delidded
 - Heavy ions and low energy proton tests
- Commercially available

Reference	Artix 7 XC7A35T-1CPG236C	R1QBA7218ABG-22IB0	Spartan 6 XC6SLX9-TQFP144
Manufacturer	Xilinx	Renesas	Xilinx
Function	SRAM based FPGA	DDR SRAM	SRAM based FPGA
Package	CPG236	165FBGA	TQFP144
Techno	28nm	45nm	45nm

Artix 7 Xilinx FPGA

High integration scale (28nm)

R1QBA7218A Renesas memory

- Commercially available 45nm SRAM memory
- High frequency synchronous device
 - Frequency operation can be reduced via internal PLL desabling...

Spartan 6 Xilinx FPGA

- Electron and low energy protons sensitivity already demonstrated
- ESA/CNES collaboration
 - Test-bed developed by TRAD for the CNES on previous studies and shared for this project
 - Test results shared by the ESA with the CNES

Reference	Artix 7 XC7A35T-1CPG236C	R1QBA7218ABG-22IB0	Spartan 6 XC6SLX9-TQFP144
Manufacturer	Xilinx	Renesas	Xilinx
Function	SRAM based FPGA	DDR SRAM	SRAM based FPGA
Package	CPG236	165FBGA	TQFP144
Techno	28nm	45nm	45nm

COMPANIENT OF CONTRACT OF CONTRACT.

- Heavy ions and high energy protons
 - Plenty of existing adapted facilities in Europe
- Low energy protons

Tests & radiations

- Proton direct ionization tests already performed at European facilities
 - CNA (Centro Nacional de Aceleradores, Spain)
 - RADEF (RADiation Effects Facility, Finland)

High energy electrons

- Several existing facility, different beam maturity levels...
- Has to be related to electron SEE experimental problems

- Total dose deposition
- Potential dose rate device sensitivity

COSA Study Progress

Tests & radiations

- Electrons E < 20 MeV ٠ • NPL July 2016
- **Heavy ions RADEF** RADEF August 2016
- High energy protons PSI March 2017
- Tests still to do...
 - Low energy protons ٠
 - **High energy electrons**

Artix-7 FPGA

- Sensitive to electrons
- Very few events, only observed at 20 MeV (max. incident energy tested)
- 2 SEU and 1 SET
- No MBU, SEFI or SEL under electrons < 20 MeV</p>

8

07/03/2017 – ESA/CNES Presentation Days

CSA Electron Test Results

9

Renesas sync. SRAM memory

Tests & radiations

- Sensitive to electrons
 - Interesting sensitivity
- SET only observed at 20 MeV
- SEU E_{th} < 10 MeV
- No MBU, SEFI or SEL under electrons < 20 MeV

07/03/2017 – ESA/CNES Presentation Days

COSA Heavy Ion Test Results

Artix-7 FPGA

Tests & radiations

- SET very few events but L_{th}<3.6MeV.cm².mg⁻¹
- SEU L_{th}<1.8MeV.cm².mg⁻¹
- SEFI L_{th}<1.8MeV.cm².mg⁻¹
- No MBU or SEL under heavy ions up to 32 MeV.cm².mg⁻¹

07/03/2017 – ESA/CNES Presentation Days 10

CSa Heavy Ion Test Results

Renesas sync. SRAM memory

Tests & radiations

- SET only observed at 60MeV.cm².mg⁻¹
- SEU L_{th}<1.8MeV.cm².mg⁻¹
- MBU L_{th}<1.8MeV.cm².mg⁻¹
- No SEFI or SEL under heavy ions up to 60MeV.cm².mg⁻¹

07/03/2017 – ESA/CNES Presentation Days 11

COSA Heavy Ion Test Results

Spartan-6 FPGA

Tests & radiations

- Partial cross-section
 - Only 2 LET values
- SEU L_{th}<3.6MeV.cm².mg⁻¹
- SEFI L_{th}<3.6MeV.cm².mg⁻¹
- No MBU, SET or SEL under heavy ions up to 10MeV.cm².mg⁻¹

07/03/2017 – ESA/CNES Presentation Days 12

Test campaign in progress

- 3 test-beds
- 5 test facilities
- The 3 selected devices an interesting sensitivity
 - All sensitive to electrons
- Data analysis has also been started with the already collected test data
 - Calculate the rates for all contributions in the Juice environment

- Assess the impact of electrons compared to others
- Next important step...
 - 100 MeV electron test