

Impact of Multiple Write Cycles on the Radiation Sensitivity of NAND Flash Memory Devices

B. Vandevelde, N. Chatry, <u>N. Sukhaseum (TRAD)</u> E. Lorfèvre (CNES)

Radecs 2016 Proceedings

07/03/2017 – ESA/CNES Presentation Days

TRAD, Tests & Radiations

- Investigation about the impact of multiple write cycles on NAND Flash memory radiation sensitivity
 - Successive pre-irradiation write cycles
 - Charge accumulation in floating gate
- Application of the Flash memory hardening methodology proposed by M. Kay
 [4][5]
- Main parameter studied : Data Corruption
 - Data corruption = Relative percentage of corrupted data over all tested addresses
 - Comparison before/after irradiation

TID tests

- GAMRAY cobalt-60 facility (TRAD, Labege – France)
- Evolution of the data corruption as a function of the TID level
- Heavy ion tests
 - Performed at UCL (Université Catholique de Louvain, Belgium)
 - Evolution of the SEU cross section as a function of the LET

UCL cyclotron SEU tests

TRAD, Tests & Radiations

07/03/2017 – ESA/CNES Presentation Days

Two Flash memory commercial references from distinct manufacturers were tested

Manufacturer	Micron	Samsung	
Reference	MT29F128G08AJAAAWP	K9WBG08U1M-PCB0	
Technology	SLC NAND Flash	SLC NAND Flash	
Package	TSOP48	TSOP48	
Size	128 Gb	32 Gb	
Die number	4	2	

Irradiated devices were initialized before irradiation

- Store data by applying different numbers of write cycles in separated sectors of the memory array
- Assessment of the write cycle number impact on the same die

Pre-irradiation initialization

TID tests

Part type	Sector number	Sector size (256 kB blocks)	Number of write cycles
Samsung	1	100	1
	2	100	10
	3	100	100
	4	50	1 000
	5	10	5 000
	6	10	10 000
	7	10	100 000
Micron	1	100	1
	2	100	10
	3	100	100
	4	10	1 000
	5	10	10 000
	6	4	60 000

Part type	Sector number	Sector size (1 MB blocks)	Number of write cycles
Samsung	1	100	1
	2	100	10
	3	100	100
	4	50	1 000
	5	20	5 000
	6	20	10 000
	7	15	50 000
Micron	1	100	1
	2	100	10
	3	100	100
	4	50	1 000
	5	50	2 000
	6	10	5 000
	7	10	8 000

- Initialization impact on the device functionality
 - Generation of disturbed cells
 - Chekerboard pattern: accumulated charge leakage from « full » cells (0) to adjacent « empty » cells (1)
- Radiation-induced recovery effect
 - Radiation-induced charge leakage from disturbed cells
 - Expected data can be recovered

Samsung K9WBG

- 10% of post-initialization distrubed cells before irradiation for 100 000 write cycles
- Recovery effect observed
- Trade-off between hardening effect and disturbed cell generation (around 1000 write cycles)

Micron MT29F128

- Same behaviour as the K9WBG but weaker TID hardness
- Benefits of charge accumulation on TID-induced data corruption are visible above several tenth of krad
- Importance of TID hardness to observe the benefits of multiple write cycles

- Due to the disturbed cell generation during pre-irradiation initialization, and the radiation-induced recovery effects, the SEU test data were post-analyzed in order to plot the SEU cross section
- During the SEU test
 - The memory content is just read before and after irradiation

The recovery effect has to be taken into account

- Make a distinction between the data corruption caused:
 - By disturbed cells
 - By ion-induced SEU

Comparison between corrupted address/data before and after irradiation

- Address with error <u>after, but not before</u>, is considered as modified by ion-induced SEU
- Address with error <u>before</u>, <u>but not after</u>, is considered as modified by recovery effect

For both references

- SEU cross section decrease up to 1000 write cycles
- Above 1000 write cycles
 - SEU cross section increase
 - Lower SEU LET threshold (only for the Samsung K9WBG)

Limit of 1000 write cycles

- Below this limit the hardening effect due to charge accumulation can be significant, whereas the disturbed cell generation is low
- Same limit observed for TID tests

TRAD, Tests & Radiations

07/03/2017 – ESA/CNES Presentation Days

- Both tested references are sensitive to the charge accumulation caused by multiple write cycles
 - Under TID the radiation-induced data corruption occurs at higher dose levels when the number of write cycles increases
 - SEU sensitivity can be decreased thanks to multiple write cycles
- The application of a large number of write cycles generates disturbed cells
 - Recovery effect observed under both TID and SEU tests
 - Trade-off between positive reduction of data corruption and generation of disturbed cells
- On the tested references, 1000 write cycles is the best case
 - * Far below memory endurance
 - Small initialization-induced data corruption
 - Less radiation-induced data corruption
- Interesting methodology for high dose application with radiation tolerant devices
 - Hardening effect visible above several tenth of krad

[1] S. Gerardin et al. "Radiation Effects in Flash Memories" IEEE Trans. Nucl. Sci., vol. 60, no. 3, June 2013

- [2] G. Cellere et al., "Direct evidence of secondary recoiled nuclei from high energy protons," IEEE Trans. Nucl. Sci., vol. 55, no. 6, Dec. 2008
- [3] Bagatin et al. "Increase in the heavy-ion upset cross section of floating gate cells previously exposed to TID" IEEE Trans. Nucl. Sci., vol. 57, no. 6, 2010
- [4] M. Kay et al. "Effect of Accumulated Charge on the Total Ionizing Dose Response of a NAND Flash Memory" IEEE Trans. Nucl. Sci., vol. 59, no. 6, Dec. 2012
- [5] M. Kay et al. "Using Charge Accumulation to Improve the Radiation Tolerance of Multi-Gb NAND Flash Memories" IEEE Trans. Nucl. Sci., vol. 60, no. 6, Dec. 2013

10

07/03/2017 – ESA/CNES Presentation Days

TRAD, Tests & Radiations